
PREPARED BY C.YAMINI (ASST PROF)

(MCA-S.V.UNIVERSITY,TIRUPATI)

1-SEMESTER

PREPARED BY: MISS.C.YAMINI M.C.A,

Department of Computer Science,
KMM INSTITUTE OF POST GRADUATION STUDIES.

KMM INSTITUTE OF POST GRADUATION STUDIES

Ramireddipalle, TIRUPATI-517102

Unit-1

STUDY MATERIAL

PREPARED BY C.YAMINI (ASST PROF)

1.Computer Organization:

The basic functional units of computer are made of electronics circuit and it works with electrical

signal. We provide input to the computer in form of electrical signal and get the output in form of

electrical signal.

There are two basic types of electrical signals, namely, analog and digital. The analog signals are

continuous in nature and digital signals are discrete in nature.

The electronic device that works with continuous signals is known as analog device and the electronic

device that works with discrete signals is known as digital device. In present days most of the

computers are digital in nature and we will deal with Digital Computer in this course.

Computer is a digital device, which works on two levels of signal. We say these two levels of signal

as High and Low. The High-level signal basically corresponds to some high-level signal (say 5 Volt or

12 Volt) and Low-level signal basically corresponds to Low-level signal (say 0 Volt). This is one

convention, which is known as positive logic. There are others convention also like negative logic.

Since Computer is a digital electronic device, we have to deal with two kinds of electrical signals. But

while designing a new computer system or understanding the working principle of computer, it is

always difficult to write or work with 0V or 5V.

To make it convenient for understanding, we use some logical value, say,

 LOW (L) - will represent 0V and

 HIGH (H) - will represent 5V

Computer is used to solve mainly numerical problems. Again it is not convenient to work with

symbolic representation. For that purpose we move to numeric representation. In this convention, we

use 0 to represent LOW and 1 to represent HIGH.

 0 means LOW

 1 means HIGH

To know about the working principle of computer, we use two numeric symbols only namely 0 and 1.

All the functionalities of computer can be captured with 0 and 1 and its theoretical background

corresponds to two valued boolean algebra.

With the symbol 0 and 1, we have a mathematical system, which is knows as binary number system.

Basically binary number system is used to represent the information and manipulation of information

in computer. This information is basically strings of 0s and 1s.

The smallest unit of information that is represented in computer is known as Bit (Binary Digit),

which is either 0 or 1. Four bits together is known as Nibble, and Eight bits together is known as Byte.

Computer Organization and Architecture

Computer technology has made incredible improvement in the past half century. In the early part of

computer evolution, there were no stored-program computer, the computational power was less and on

the top of it the size of the computer was a very huge one.

PREPARED BY C.YAMINI (ASST PROF)

Today, a personal computer has more computational power, more main memory,more disk storage,

smaller in size and it is available in effordable cost.

This rapid rate of improvement has come both from advances in the technology used to build

computers and from innovation in computer design. In this course we will mainly deal with the

innovation in computer design.

The task that the computer designer handles is a complex one: Determine what attributes are important

for a new machine, then design a machine to maximize performance while staying within cost

constraints.

This task has many aspects, including instruction set design, functional organization, logic design, and

imple mentation.

While looking for the task for computer design, both the terms computer organization and computer

architecture come into picture.

It is difficult to give precise definition for the terms Computer Organization and Computer

Architecture. But while describing computer system, we come across these terms, and in literature,

computer scientists try to make a distinction between these two terms.

Computer architecture refers to those parameters of a computer system that are visible to a

programmer or those parameters that have a direct impact on the logical execution of a program.

Examples of architectural attributes include the instruction set, the number of bits used to represent

different data types, I/O mechanisms, and techniques for addressing memory.

Computer organization refers to the operational units and their interconnections that realize the

architectural specifications. Examples of organizational attributes include those hardware details

transparent to the programmer, such as control signals, interfaces between the computer and

peripherals, and the memory technology used.

In this course we will touch upon all those factors and finally come up with the concept how these

attributes contribute to build a complete computer system.

2.Basic Computer Model and different units of Computer

The model of a computer can be described by four basic units in high level abstraction which is shown

in figure 1.1. These basic units are:

 Central Processor Unit

 Input Unit

Output Unit

 Memory Unit

PREPARED BY C.YAMINI (ASST PROF)

 Figure 1.1: Basic Unit of a Computer

Basic Computer Model and different units of Computer

A. Central Processor Unit (CPU) :

Central processor unit consists of two basic blocks :

o The program control unit has a set of registers and control circuit to generate

control signals.

o The execution unit or data processing unit contains a set of registers for storing

data and an Arithmatic and Logic Unit (ALU) for execution of arithmatic and

logical operations.

In addition, CPU may have some additional registers for temporary storage of data.

B. Input Unit :

With the help of input unit data from outside can be supplied to the computer. Program or data is read

into main storage from input device or secondary storage under the control of CPU input instruction.

Example of input devices: Keyboard, Mouse, Hard disk, Floppy disk, CD-ROM drive etc.

C. Output Unit :

With the help of output unit computer results can be provided to the user or it can be stored in stograge

device permanently for future use. Output data from main storage go to output device under the control

of CPU output instructions.

Example of output devices: Printer, Monitor, Plotter, Hard Disk, Floppy Disk etc.

D. Memory Unit :

Memory unit is used to store the data and program. CPU can work with the information stored

in memory unit. This memory unit is termed as primary memory or main memory module. These are

basically semi conductor memories.

There ate two types of semiconductor memories -

 Volatile Memory : RAM (Random Access Memory).

PREPARED BY C.YAMINI (ASST PROF)

 Non-Volatile Memory : ROM (Read only Memory), PROM (Programmable ROM)

 EPROM (Erasable PROM), EEPROM (Electrically

Erasable PROM).

 Secondary Memory :
 There is another kind of storage device, apart from primary or main memory, which is

known as secondary memory. Secondary memories are non volatile memory and it is

used for permanent storage of data and program.

 Example of secondary memories:

Hard Disk, Floppy Disk, Magenetic Tape ------ These are magnetic devices,

CD-ROM ------ is optical device

Thumb drive (or pen drive) ------ is semiconductor memory.

Main Memory Organization

Main memory unit is the storage unit, There are several location for storing information in the main

memory module.

The capacity of a memory module is specified by the number of memory location and the information

stored in each location.

A memory module of capacity 16 X 4 indicates that, there are 16 location in the memory module and

in each location, we can store 4 bit of information.

We have to know how to indicate or point to a specific memory location. This is done by address of

the memory location.

We need two operation to work with memory.

READ Operation:

This operation is to retrive the data from memory and bring it to

CPU register

WRITE Operation:

This operation is to store the data to a memory location from CPU

register

We need some mechanism to distinguish these two operations READ and WRITE.

Main Memory Organization

Main memory unit is the storage unit, There are several location for storing information in the main

memory module.

The capacity of a memory module is specified by the number of memory location and the information

stored in each location.

A memory module of capacity 16 X 4 indicates that, there are 16 location in the memory module and

in each location, we can store 4 bit of information.

We have to know how to indicate or point to a specific memory location. This is done by address of

the memory location.

PREPARED BY C.YAMINI (ASST PROF)

We need two operation to work with memory.

READ Operation:

This operation is to retrive the data from memory and bring it to

CPU register

WRITE Operation:

This operation is to store the data to a memory location from CPU

register

We need some mechanism to distinguish these two operations READ and WRITE.

3.Binary Number System

We have already mentioned that computer can handle with two type of signals, therefore, to represent

any information in computer, we have to take help of these two signals.

These two signals corresponds to two levels of electrical signals, and symbolically we represent them

as 0 and 1.

In our day to day activities for arithmatic, we use the Decimal Number System. The decimal number

system is said to be of base, or radix 10, because it uses ten digits and the coefficients are multiplied by

power of 10.

A decimal number such as 5273 represents a quantity equal to 5 thousands plus 2 hundres, plus 7 tens,

plus 3 units. The thousands, hundreds, etc. are powers of 10 implied by the position of the coefficients.

To be more precise, 5273 should be written as:

However, the convention is to write only the coefficient and from their position deduce the necessary

power of 10.

In decimal number system, we need 10 different symbols. But in computer we have provision to

represent only two symbols. So directly we can not use decimal number system in computer

arithmatic.

For computer arithmatic we use binary number system. The binary number system uses two symbols

to represent the number and these two symbols are 0 and 1.

The binary number system is said to be of base 2 or radix 2, because it uses two digits and the

coefficients are multiplied by power of 2.

The binary number 110011 represents the quantity equal to:

 (in decimal)

We can use binary number system for computer arithmatic.

Representation of Unsigned Integers

PREPARED BY C.YAMINI (ASST PROF)

Any integer can be stored in computer in binary form. As for example:

The binary equivalent of integer 107 is 1101011, so 1101011 are stored to represent 107.

What is the size of Integer that can be stored in a Computer?

It depends on the word size of the Computer. If we are working with 8-bit computer, then we can use

only 8 bits to represent the number.The eight bit computer means the storage organization for data is 8

bits.

In case of 8-bit numbers, the minimum number that can be stored in computer is 00000000 (0) and

maximum number is 11111111 (255) (if we are working with natural numbers).

So, the domain of number is restricted by the storage capacity of the computer. Also it is related to

number system; above range is for natural numbers.

In general, for n-bit number, the range for natural number is from

Any arithmetic operation can be performed

with the help of binary number system.

Consider the following two examples, where

decimal and binary additions are shown side

by side.

 01101000 104

00110001 49

--------------- ------

10011001 153

In the above example, the result is an 8-bit number, as it can be stored in the 8-bit computer, so we get

the correct results.

 10000001 129

 10101010 178

----------------- ------

100101011 307

In the above example, the result is a 9-bit number, but we can store only 8 bits, and the most

significant bit (MSB) cannot be stored.

The result of this addition will be stored as (00101011) which is 43 and it is not the desired result.

Since we cannot store the complete result of an operation, and it is known as the overflow case.

The smallest unit of information is known as BIT (BInary digit).

The binary number 110011 consists of 6 bits and it represents:

For an n-bit number the coefficient is - multiplied by where, ()

The coefficient is multiplied by and it is known as most significant bit (MSB).

The coefficient is multiplied by and it is known as least significant bit (LSB).

For our convenient, while writing in paper, we may take help of other number systems like octal and

hexadecimal. It will reduce the burden of writing long strings of 0s and 1s.

PREPARED BY C.YAMINI (ASST PROF)

Octal Number : The octal number system is said to be of base, or radix 8, because it uses 8 digits and

the coefficients are multiplied by power of 8.

Eight digits used in octal system are: 0, 1, 2, 3, 4, 5, 6 and 7.

Hexadecimal number : The hexadecimal number system is said to be of base, or radix 16, because it

uses 16 symbols and the coefficients are multiplied by power of 16.

Sixteen digits used in hexadecimal system are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F.

Consider the following addition example:

Binary Octal Hexadecimal Decimal

01101000 150 68 104

00111010 072 3A 58

--------------- ------ ------ -----

10100010 242 A2 162

Signed Integer

We know that for n-bit number, the range for natural number is from .

For n-bit, we have all together different combination, and we use these different combination to

represent numbers, which ranges from .

If we want to include the negative number, naturally, the range will decrease. Half of the combinations

are used for positive number and other half is used for negative number.

For n-bit represenatation, the range is from .

For example, if we consider 8-bit number, then range

 for natural number is from 0 to 255; but

 for signed integer the range is from -127 to +127.

Representation of signed integer

We know that for n-bit number, the range for natural number is from .

There are three different schemes to represent negative number:

 Signed-Magnitude form.

 1’s complement form.

 2’s complement form.

Signed magnitude form:

In signed-magnitude form, one particular bit is used to indicate the sign of the number, whether it is a

positive number or a negative number. Other bits are used to represent the magnitude of the number.

PREPARED BY C.YAMINI (ASST PROF)

For an n-bit number, one bit is used to indicate the signed information and remaining (n-1) bits are

used to represent the magnitude. Therefore, the range is from .

Generally, Most Significant Bit (MSB) is used to indicate the sign and it is termed as signed bit. 0 in

signed bit indicates positive numvber and 1 in signed bit indicates negative number.

For example, 01011001 represents + 169 and

 11011001 represents - 169

What is 00000000 and 10000000 in signed magnitude form?

The concept of complement

 The concept of complements is used to represent signed number.

Consider a number system of base-r or radix-r. There are two types of complements,

 The radix complement or the r’s complement.

 The diminished radix complement or the (r - 1)’s complement.

Diminished Radix Complement :Given a number N in base r having n digits, the (r -

1)’s complement of N is defined as For decimal numbers, r = 10 and r - 1 =

9, so the 9’s complement of N is .

 e.g., 9’s complement of 5642 is 9999 - 5642 = 4357

Radix Complement :The r’s complement of an n-digit number in base r is defined

as for N != 0 and 0 for N = 0.

r’s complement is obtained by adding 1 to the (r - 1)’s

complement, since

 e.g., 10's complement of 5642 is 9's complement of 5642 + 1, i.e., 4357 + 1 = 4358

 e.g., 2's complement of 1010 is 1's complement of 1010 + 1, i.e., 0101 + 1 = 0110.

Representation of Signed integer in 1's complement form:

Consider the eight bit number 01011100, 1's

complements of this number is 10100011. If we

perform the following addition:

If we add 1 to the number, the result is 100000000.

0 1 0 1 1 1 0 0

1 0 1 0 0 0 1 1

1 1 1 1 1 1 1 1

Since we are considering an eight bit number, so the 9th bit (MSB) of the result can not be stored.

Therefore, the final result is 00000000.

Since the addition of two number is 0, so one can be treated as the negative of the other number. So,

1's complement can be used to represent negative number.

Representation of Signed integer in 2's complement form:

PREPARED BY C.YAMINI (ASST PROF)

Consider the eight bit number 01011100, 2's complements of this number is 10100100. If we perform

the follwoing addition:

0 1 0 1 1 1 0 0

1 0 1 0 0 0 1 1

1 0 0 0 0 0 0 0 0

Since we are considering an eight bit number, so the 9th bit (MSB) of the result can not be stored.

Therefore, the final result is 00000000.

Since the addition of two number is 0, so one can be treated as the negative of the other number. So,

2's complement can be used to represent negative number.

Decimal 2's Complement 1's complement Signed Magnitude

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0001 0001 0001

+0 0000 0000 0000

-0 ----- 1111 1000

-1 1111 1110 1001

-2 1110 1101 1010

-3 1101 1100 1011

-4 1100 1011 1100

-5 1011 1010 1101

-6 1010 1001 1110

-7 1001 1000 1111

-8 1000 ------ -------

Representation of Real Number

Binary representation of 41.6875 is 101001.1011

Therefore any real number can be converted to binary number system

There are two schemes to represent real number :

PREPARED BY C.YAMINI (ASST PROF)

 Fixed-point representation

 Floating-point representation

 Fixed-point representation:
 Binary representation of 41.6875 is 101001.1011

 To store this number, we have to store two information,

 -- the part before decimal point and

 -- the part after decimal point.

 This is known as fixed-point representation where the position of decimal point is fixed

and number of bits before and after decimal point are also predefined.

 If we use 16 bits before decimal point and 7 bits after decimal point, in signed

magnitude form, the range is

 One bit is required for sign information, so the total size of the number is 24 bits

 (1(sign) + 16(before decimal point) + 7(after decimal point)).

Floating-point representation:

 In this representation, numbers are represented by a mantissa comprising the significant

digits and an exponent part of Radix R. The format is:

 Numbers are often normalized, such that the decimal point is placed to the right of

the first non zero digit.

 For example, the decimal number,

 5236 is equivqlent to

 To store this number in floating point representation, we store 5236 in mantissa part and

4 in exponent part.

IEEE standard floating point format:

IEEE has proposed two standard for representing floating-point number:

 Single precision

 Double precision

Single Precision:

S E M

S: sign bit: 0 denoted + and 1 denotes -

E: 8-bit excess -27 exponent

M: 23-bit mantissa

Double Precision:

S E M

S: sign bit: 0 denoted + and 1 denotes -

E: 11-bit excess -1023 exponent

M: 52-bit mantissa

PREPARED BY C.YAMINI (ASST PROF)

Representation of Character

Since we are working with 0's and 1's only, to represent character in computer we use strings of 0's

and 1's only.

To represent character we are using some coding scheme, which is nothing but a mapping function.

Some of standard coding schemes are: ASCII, EBCDIC, UNICODE.

ASCII : American Standard Code for Information Interchange.

 It uses a 7-bit code. All together we have 128 combinations of 7 bits and we can represent

128 character.

 As for example 65 = 1000001 represents character 'A'.

EBCDIC : Extended Binary Coded Decimal Interchange Code.

 It uses 8-bit code and we can represent 256 character.

UNICODE : It is used to capture most of the languages of the world. It uses 16-bit

Unicode provides a unique number for every character, no matter what the platform, no matter what

the program, no matter what the language. The Unicode Standard has been adopted by such industry

leaders as Apple, HP, IBM, JustSystem, Microsoft, Oracle, SAP, Sun, Sybase, Unisys and many

others.

4.A Brief History of Computer Architecture

Computer Architecture is the field of study of selecting and interconnecting hardware components to

create computers that satisfy functional performance and cost goals. It refers to those attributes of the

computer system that are visible to a programmer and have a direct effect on the execution of a

program.

Computer Architecture concerns Machine Organization, interfaces, application, technology,

measurement & simulation that Includes:

 Instruction set

 Data formats

 Principle of Operation (formal description of every operation)

 Features (organization of programmable storage, registers used, interrupts

mechanism, etc.)

In short, it is the combination of Instruction Set Architecture, Machine Organization and the related

hardware.

Generation: The Brief History of Computer Architecture

First Generation (1940-1950) :: Vacuum Tube

 ENIAC [1945]: Designed by Mauchly & Echert, built by US army to calculate

trajectories for ballistic shells during Worls War II. Around 18000 vacuum tubes and

PREPARED BY C.YAMINI (ASST PROF)

1500 relays were used to build ENIAC, and it was programmed by manually setting

switches

 UNIVAC [1950]: the first commercial computer

 John Von Neumann architecture: Goldstine and Von Neumann took the idea of

ENIAC and developed concept of storing a program in the memory. Known as the Von

Neumann's architecture and has been the basis for virtually every machine designed

since then.

Features:

 Electron emitting devices

 Data and programs are stored in a single read-write memory

 Memory contents are addressable by location, regardless of the content itself

 Machine language/Assemble language

 Sequential execution

Second Generation (1950-1964) :: Transistors

 William Shockley, John Bardeen, and Walter Brattain invent the transistor that reduce size of

computers and improve reliability. Vacuum tubes have been replaced by transistors.

 First operating Systems: handled one program at a time

 On-off switches controlled by electronically.

 High level languages

 Floating point arithmetic

Third Generation (1964-1974) :: Integrated Circuits (IC)

 Microprocessor chips combines thousands of transistors, entire circuit on one computer chip.

 Semiconductor memory

 Multiple computer models with different performance characteristics

 The size of computers has been reduced drastically

Fourth Generation (1974-Present) :: Very Large-Scale Integration (VLSI) / Ultra Large Scale

Integration (ULSI)

 Combines millions of transistors

 Single-chip processor and the single-board computer emerged

 Creation of the Personal Computer (PC)

 Use of data communications

 Massively parallel machine

PREPARED BY C.YAMINI (ASST PROF)

Evolution of Instruction Sets

Instruction Set Architecture (ISA) Abstract interface between the Hardware and lowest-level

Software

 1950: Single Accumulator: EDSAC

 1953: Accumulator plus Index Registers: Manchester Mark I, IBM 700 series

 Separation of programming Model from implementation:

o 1963: High-level language Based: B5000

o 1964: Concept of a Family: IBM 360

 General Purpose Register Machines:

o 1963-1976: Load/Store Architecture: CDC 6600, Cray 1

o 1977-1980: CISC - Complex Instruction Sets computer: Vax, Intel 432

o 1987: RISC: Reduced Instruction Set Computer: Mips, Sparc, HP-PA, IBM

RS6000

Typical RISC:

o Simple, no complex addressing

o Constant length instruction, 32-bit fixed format

o Large register file

o Hard wired control unit, no need for micro programming

o Just about every opposites of CISC

Major advances in computer architecture are typically associated with landmark instruction set

designs. Computer architecture's definition itself has been through bit changes. The following are the

main concern for computer architecture through different times:

 1930-1950: Computer arithmetic

o Microprogramming

o Pipelining

o Cache

o Timeshared multiprocessor

 1960: Operating system support, especially memory management

o Virtual memory

 1970-1980: Instruction Set Design, especially for compilers; Vector processing and shared

memory multiprocessors

o RISC

 1990s: Design of CPU, memory system, I/O system, multi-processors, networks

o CC-UMA multiprocessor

o CC-NUMA multiprocessor

o Not-CC-NUMA multiprocessor

o Message-passing multiprocessor

o 2000s: Special purpose architecture, functionally reconfigurable,special considerations

for low power/mobile processing, chip multiprocessors, memory systems

 Massive SIMD

 Parallel processing multiprocessor

PREPARED BY C.YAMINI (ASST PROF)

Under a rapidly changing set of forces, computer technology keeps at dramatic change, for example:

 Processor clock rate at about 20% increase a year

 Logic capacity at about 30% increase a year

 Memory speed at about 10% increase a year

 Memory capacity at about 60% increase a year

 Cost per bit improves about 25% a year

 The disk capacity increase at 60% a year.

5.A Brief History of Computer Organization

If computer architecture is a view of the whole design with the important characteristics visible to

programmer, computer organization is how features are implemented with the specific building

blocks visible to designer, such as control signals, interfaces, memory technology, etc. Computer

architecture and organization are closely related, though not exactly the same.

A stored program computer has the following basic units:

 Processor -- center for manipulation and control

 Memory -- storage for instructions and data for currently executing programs

 I/O system -- controller which communicate with "external" devices:

 secondary memory, display devices, networks

 Data-path & control -- collection of parallel wires, transmits data, instructions, or

control signal

Computer organization defines the ways in which these components are interconnected and controlled.

It is the capabilities and performance characteristics of those principal functional units. Architecture

can have a number of organizational implementations, and organization differs between different

versions. Such, all Intel x86 families share the same basic architecture, and IBM system/370 family

share their basic architecture.

The history of Computer Organization

Computer architecture has progressed four generation: vacuum tubes, transistors, integrated

circuits, and VLSI. Computer organization has also made its historic progression accordingly.

The advance of microprocessor (Intel)

 1977: 8080 - the first general purpose microprocessor, 8 bit data path, used in first personal

computer

 1978: 8086 - with 16 bit, 1MB addressable, instruction cache, prefetch few instructions

PREPARED BY C.YAMINI (ASST PROF)

 1980: 80186 - identical to 8086 widh additional reserved interrupt vectors and some very

powerful buli-in

 I/O functions.

 1982: 80286 - 24 Mbyte addressable memory space, plus instructions

 1985: 80386 - 32 bit, new addressing modes and support for multitasking

 1989 -- 1995:
o 80486 - 25, 33, MHz, 1.2 M transistors, 5 stage pipeline, sophisticated powerful

cache and

 instruction pipelining, built in math co-processor.

o Pentium - 60, 66 MHz, 3.1 M transistor, branch predictor, pipelined floating point,

multiple instructions

 executed in parallel, first superscalar IA-32.

o PentiumPro - Increased superscalar, register renaming, branch prediction, data flow

analysis,

 and speculative execution

 1995 -- 1997: Pentium II - 233, 166, 300 MHz, 7.5 M transistors, first compaction of micro-

architecture,

 MMX technology, graphics video and audio processing.

 1999: Pentium III - additional floating point instructions for 3D graphics

 2000: Pentium IV - Further floating point and multimedia enhancements

Evolution of Memory

o 1970: RAM /DRAM, 4.77 MHz

o 1987: FPM - fast page mode DRAM, 20 MHz

o 1995, EDO - Extended Data Output, which increases the read cycle between memory

and CPU, 20 MHz

o 1997- 1998: SDRAM - Synchronous DRAM, which synchronizes itself with the CPU

bus and runs at higher clock speeds, PC66 at 66 MHz, PC100 at 100 MHz

o 1999: RDRAM - Rambus DRAM, which DRAM with a very high bandwidth, 800

MHz

o 1999-2000: SDRAM - PC133 at 133 MHz, DDR at 266 MHz.

o 2001: EDRAM - Enhanced DRAM, which is dynamic or power-refreshed RAM, also

know as cached DRAM.

6.Basic Operational Concepts

An Instruction consists of two parts, an Operation code and operand/s

 Let us see a typical instruction ADD LOCA, R0 This instruction is an addition operation. The

following are the steps to execute the instruction

 Step 1: Fetch the instruction from main memory into the processor

 Step 2: Fetch the operand at location LOCA from main memory into the processor

 Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register R0

 Step 4: Store the result (sum) in R0.

PREPARED BY C.YAMINI (ASST PROF)

 The same instruction can be realized using two instructions as

 Load LOCA, R1

 Add R1, R0

 The steps to execute the instructions can be enumerated as below:

 Step 1: Fetch the instruction from main memory into the processor

 Step 2: Fetch the operand at location LOCA from main memory into the processor Register R1

 Step 3: Add the content of Register R1 and the contents of register R0

 Step 4: Store the result (sum) in R0.

 Figure 3 below shows how the memory and the processor are connected. As shown in the

diagram, in addition to the ALU and the control circuitry, the processor contains a number of

registers used for several different purposes. The instruction register holds the instruction that

is currently being executed. The program counter keeps track of the execution of the program.

It contains the memory address of the next instruction to be fetched and executed. There are n

general purpose registers R0 to Rn-1 which can be used by the programmers during writing

programs.

 The interaction between the processor and the memory and the direction of flow of information

is as shown in the diagram below:

PREPARED BY C.YAMINI (ASST PROF)

7.Bus structure
Single bus structure: In computer architecture, a bus is a subsystem that transfers data

between components inside a computer, or between computers. Early computer buses were

literally parallel electrical wires with multiple connections, but Modern computer buses can use

both parallel and bit serial connections.

 Figure 1.3.1 Single bus structure

To achieve a reasonable speed of operation, a computer must be organized so that all its units

can handle one full word of data at a given time. When a word of data is transferred between

units, all its bits are transferred in parallel, that is, the bits are transferred simultaneously over

many wires, or lines, one bit per line. A group of lines that serves as a connecting path for

several devices is called a bus. In addition to the lines that carry the data, the bus must have

lines for address and control purposes. The simplest way to interconnect functional units is to

use a single bus, as shown in Figure 1.3.1. All units are connected to this bus. Because the bus

can be used for only one transfer at a time, only two units can actively use the bus at any given

time. Bus control lines are used to arbitrate multiple requests for use of the bus. The main

virtue of the single-bus structure is its low cost and is flexibility for attaching peripheral"

devices. Systems that contain multiple buses achieve more concurrency in operations by

allowing two or more transfers to be carried out at the same time. This leads to better

performance but at an increased cost.

 Parts of a System bus: Processor, memory, Input and output devices are connected by system

bus, which consists of separate busses as shown in figure 1.3.2. They are:

(i)Address bus: Address bus is used to carry the address. It is unidirectional bus. The address

is sent to from CPU to memory and I/O port and hence unidirectional. It consists of 16, 20, 24

or more parallel signal lines.

(ii)Data bus: Data bus is used to carry or transfer data to and from memory and I/O ports.

They are bidirectional. The processor can read on data lines from memory and I/O port and as

well as it can write data to memory. It consists of 8, 16, 32 or more parallel signal lines.

(iii)Control bus: Control bus is used to carry control signals in order to regulate the control

activities. They are bidirectional. The CPU sends control signals on the control bus to enable

the outputs of addressed memory devices or port devices. Some of the control signals are:

MEMR (memory read), MEMW (memory write), IOR (I/O read), IOW (I/O write), BR (bus

request), BG (bus grant), INTR (interrupt request), INTA (interrupt acknowledge), RST (reset),

RDY (ready), HLD (hold), HLDA (hold acknowledge),

PREPARED BY C.YAMINI (ASST PROF)

 Figure 1.3.2 Bus interconnection scheme

The devices connected to a bus vary widely in their speed of operation. Some

electromechanical devices, such as keyboards and printers are relatively slow. Other devises

like magnetic or optical disks, are considerably faster. Memory and processor units operate at

electronic speeds, making them the fastest parts of a computer. Because all these devices must

communicate with each other over a bus, an efficient transfer mechanism that is not

constrained by the slow devices and that can be used to smooth out the differences in timing

among processors, memories, and external devices is necessary.

 A common approach is to include buffer registers with the devices to hold the information

during transfers. To illustrate this technique, consider the transfer of an encoded character from

a processor to a character printer. The processor sends the character over the bus to the printer

buffer. Since the buffer is an electronic register, this transfer requires relatively little time. Once

the buffer is loaded, the printer can start printing without further intervention by the processor.

The bus and the processor are no longer needed and can be released for other activity. The

printer continues printing the character in its buffer and is not available for further transfers

until this process is completed. Thus, buffer registers smooth out timing differences among

processors, memories, and I/O devices. They prevent a high-speed processor from being locked

to a slow I/O device during a sequence of data transfers. This allows the processor to switch

rapidly from one device to another, interweaving its processing activity with data transfers

involving several I/O devices.

 The Figure 1.3.3 shows traditional bus configurations and the Figure 1.3.4 shows high speed

bus configurations. The traditional bus connection uses three buses: local bus, system bus and

expanded bus. The high speed bus configuration uses high-speed bus along with the three buses

used in the traditional bus connection. Here, cache controller is connected to highspeed bus.

This bus supports connection to high-speed LANs, such as Fiber Distributed Data Interface

(FDDI), video and graphics workstation controllers, as well as interface controllers to local

peripheral including SCSI.

PREPARED BY C.YAMINI (ASST PROF)

8.Computer performance is the amount of work accomplished by a computer system. The

word performance in computer performance means “How well is the computer doing the work it is

supposed to do?”. It basically depends on response time, throughput and execution time of a

computer system.

Response time is the time from start to completion of a task. This also includes:

 Operating system overhead.

 Waiting for I/O and other processes

 Accessing disk and memory

 Time spent executing on the CPU or execution time.

Throughput is the total amount of work done in a given time.

CPU execution time is the total time a CPU spends computing on a given task. It also excludes time

for I/O or running other programs. This is also referred to as simply CPU time.

Performance is determined by execution time as performance is inversely proportional to execution

time.

Performance = (1 / Execution time)

And,

PREPARED BY C.YAMINI (ASST PROF)

(Performance of A / Performance of B)

= (Execution Time of B / Execution Time of A)

If given that Processor A is faster than processor B, that means execution time of A is less than that

of execution time of B. Therefore, performance of A is greater than that of performance of B.

Example –

Machine A runs a program in 100 seconds, Machine B runs the same program in 125 seconds

(Performance of A / Performance of B)

= (Execution Time of B / Execution Time of A)

= 125 / 100 = 1.25

That means machine A is 1.25 times faster than Machine B.

And, the time to execute a given program can be computed as:

Execution time = CPU clock cycles x clock cycle time

Since clock cycle time and clock rate are reciprocals, so,

Execution time = CPU clock cycles / clock rate

The number of CPU clock cycles can be determined by,

CPU clock cycles

= (No. of instructions / Program) x (Clock cycles / Instruction)

= Instruction Count x CPI

Which gives,

Execution time

= Instruction Count x CPI x clock cycle time

= Instruction Count x CPI / clock rate

The units for CPU Execution time are:

9.Introduction of Multiprocessor and Multicomputer
1. Multiprocessor:
A Multiprocessor is a computer system with two or more central processing units (CPUs) share full

access to a common RAM. The main objective of using a multiprocessor is to boost the system’s

execution speed, with other objectives being fault tolerance and application matching.

There are two types of multiprocessors, one is called shared memory multiprocessor and another is

distributed memory multiprocessor. In shared memory multiprocessors, all the CPUs shares the

common memory but in a distributed memory multiprocessor, every CPU has its own private memory.

PREPARED BY C.YAMINI (ASST PROF)

Applications of Multiprocessor –

1. As a uniprocessor, such as single instruction, single data stream (SISD).

2. As a multiprocessor, such as single instruction, multiple data stream (SIMD), which is usually used

for vector processing.

3. Multiple series of instructions in a single perspective, such as multiple instruction, single data

stream (MISD), which is used for describing hyper-threading or pipelined processors.

4. Inside a single system for executing multiple, individual series of instructions in multiple

perspectives, such as multiple instruction, multiple data stream (MIMD).

Benefits of using a Multiprocessor –

 Enhanced performance.

 Multiple applications.

 Multi-tasking inside an application.

 High throughput and responsiveness.

 Hardware sharing among CPUs.

2. Multicomputer:

A multicomputer system is a computer system with multiple processors that are connected together

to solve a problem. Each processor has its own memory and it is accessible by that particular

processor and those processors can communicate with each other via an interconnection network.

As the multicomputer is capable of messages passing between the processors, it is possible to divide

the task between the processors to complete the task. Hence, a multicomputer can be used for

distributed computing. It is cost effective and easier to build a multicomputer than a multiprocessor.

Difference between multiprocessor and Multicomputer:
1. Multiprocessor is a system with two or more central processing units (CPUs) that is capable of

performing multiple tasks where as a multicomputer is a system with multiple processors that are

attached via an interconnection network to perform a computation task.

2. A multiprocessor system is a single computer that operates with multiple CPUs where as a

multicomputer system is a cluster of computers that operate as a singular computer.

3. Construction of multicomputer is easier and cost effective than a multiprocessor.

https://www.geeksforgeeks.org/computer-organization-microcomputer-system/

PREPARED BY C.YAMINI (ASST PROF)

4. In multiprocessor system, program tends to be easier where as in multicomputer system, program

tends to be more difficult.

5. Multiprocessor supports parallel computing, Multicomputer supports distributed computing.

10.Logic Gates:

o The logic gates are the main structural part of a digital system.

o Logic Gates are a block of hardware that produces signals of binary 1 or 0 when input logic

requirements are satisfied.

o Each gate has a distinct graphic symbol, and its operation can be described by means of

algebraic expressions.

o The seven basic logic gates includes: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

o The relationship between the input-output binary variables for each gate can be represented in

tabular form by a truth table.

o Each gate has one or two binary input variables designated by A and B and one binary output

variable designated by x.

AND GATE:

The AND gate is an electronic circuit which gives a high output only if all its inputs are high. The

AND operation is represented by a dot (.) sign.

OR GATE:

The OR gate is an electronic circuit which gives a high output if one or more of its inputs are high. The

operation performed by an OR gate is represented by a plus (+) sign.

PREPARED BY C.YAMINI (ASST PROF)

NOT GATE:

The NOT gate is an electronic circuit which produces an inverted version of the input at its output. It is

also known as an Inverter.

NAND GATE:

The NOT-AND (NAND) gate which is equal to an AND gate followed by a NOT gate. The NAND

gate gives a high output if any of the inputs are low. The NAND gate is represented by a AND gate

with a small circle on the output. The small circle represents inversion.

NOR GATE:

The NOT-OR (NOR) gate which is equal to an OR gate followed by a NOT gate. The NOR gate gives

a low output if any of the inputs are high. The NOR gate is represented by an OR gate with a small

circle on the output. The small circle represents inversion.

PREPARED BY C.YAMINI (ASST PROF)

Exclusive-OR/ XOR GATE:

The 'Exclusive-OR' gate is a circuit which will give a high output if one of its inputs is high but not

both of them. The XOR operation is represented by an encircled plus sign.

EXCLUSIVE-NOR/Equivalence GATE:

The 'Exclusive-NOR' gate is a circuit that does the inverse operation to the XOR gate. It will give a

low output if one of its inputs is high but not both of them. The small circle represents inversion.

Boolean algebra

Boolean algebra can be considered as an algebra that deals with binary variables and logic operations.

Boolean algebraic variables are designated by letters such as A, B, x, and y. The basic operations

performed are AND, OR, and complement.

The Boolean algebraic functions are mostly expressed with binary variables, logic operation symbols,

parentheses, and equal sign. For a given value of variables, the Boolean function can be either 1 or 0.

For instance, consider the Boolean function:

F = x + y'z

PREPARED BY C.YAMINI (ASST PROF)

The logic diagram for the Boolean function F = x + y'z can be represented as:

o The Boolean function F = x + y'z is transformed from an algebraic expression into a logic

diagram composed of AND, OR, and inverter gates.

o Inverter at input 'y' generates its complement y'.

o There is an AND gate for the term y'z, and an OR gate is used to combine the two terms (x and

y'z).

o The variables of the function are taken to be the inputs of the circuit, and the variable symbol

of the function is taken as the output of the circuit.

o The truth table for the Boolean function F = x + y'z can be represented as:

11.Examples of Boolean algebra simplifications using logic gates

In this section, we will look at some of the examples of Boolean algebra simplification using Logic

gates.

1. F1 = xyz'

2. F2 = x + y'z

PREPARED BY C.YAMINI (ASST PROF)

3. F3 = xy' + x'z

4. F4 = x'y'z + x'yz + xy'

Truth tables for F1= xyz', F2= x+y'z, F3= xy'+x'z and F4= x'y'z+x'yz+xy'

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

PREPARED BY C.YAMINI (ASST PROF)

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

12.Laws of Boolean algebra

The basic Laws of Boolean Algebra can be stated as follows:

o Commutative Law states that the interchanging of the order of operands in a Boolean equation

does not change its result. For example:

1. OR operator → A + B = B + A

2. AND operator → A * B = B * A

o Associative Law of multiplication states that the AND operation are done on two or more than

two variables. For example:

A * (B * C) = (A * B) * C

o Distributive Law states that the multiplication of two variables and adding the result with a

variable will result in the same value as multiplication of addition of the variable with

individual variables. For example:

A + BC = (A + B) (A + C).

o Annulment law:

A.0 = 0

A + 1 = 1

o Identity law:

A.1 = A

A + 0 = A

o Idempotent law:

A + A = A

A.A = A

o Complement law:

A + A' = 1

A.A'= 0

o Double negation law:

((A)')' = A

PREPARED BY C.YAMINI (ASST PROF)

o Absorption law:

A.(A+B) = A

A + AB = A

De Morgan's Law is also known as De Morgan's theorem, works depending on the concept of Duality.

Duality states that interchanging the operators and variables in a function, such as replacing 0 with 1

and 1 with 0, AND operator with OR operator and OR operator with AND operator.

13.Minterm

A minterm is a Boolean expression resulting in 1 for the output of a single cell, and 0s for all other

cells in a Karnaugh map, or truth table. If a minterm has a single 1 and the remaining cells as 0s, it

would appear to cover a minimum area of 1s

Maxterm

A maxterm is a Boolean expression resulting in a 0 for the output of a single cell expression, and 1s

for all other cells in the Karnaugh map, or truth table. The illustration above left shows the

maxterm (A+B+C), a single sum term, as a single 0 in a map that is otherwise 1s.

14.Introduction of K-Map (Karnaugh Map): In many digital circuits and practical

problems we need to find expression with minimum variables. We can minimize Boolean

expressions of 3, 4 variables very easily using K-map without using any Boolean algebra theorems.

K-map can take two forms Sum of Product (SOP) and Product of Sum (POS) according to the need

of problem. K-map is table like representation but it gives more information than TRUTH TABLE.

We fill grid of K-map with 0’s and 1’s then solve it by making groups.

PREPARED BY C.YAMINI (ASST PROF)

Steps to solve expression using K-map-

1. Select K-map according to the number of variables.

2. Identify minterms or maxterms as given in problem.

3. For SOP put 1’s in blocks of K-map respective to the minterms (0’s elsewhere).

4. For POS put 0’s in blocks of K-map respective to the maxterms(1’s elsewhere).

5. Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1) and try to

cover as many elements as you can in one group.

6. From the groups made in step 5 find the product terms and sum them up for SOP form.

SOP FORM

1. K-map of 3 variables-
Z= ∑A,B,C(1,3,6,7)

(A’C+AB)

K-map for 4 variables
F(P,Q,R,S)=∑(0,2,5,7,8,10,13,15)

PREPARED BY C.YAMINI (ASST PROF)

Final expression (QS+Q’S’)

POS FORM

1. K-map of 3 variables-

F(A,B,C)=π(0,3,6,7)

(A’ + B’ + C) (B’ + C’) (A + B + C)

15.Don’t Care (X) Conditions in K-Maps

One of the very significant and useful concept in simplifying the output expression using K-Map is

the concept of “Don’t Cares”. The “Don’t Care” conditions allow us to replace the empty cell of

a K-Map to form a grouping of the variables which is larger than that of forming groups without

don’t cares. While forming groups of cells, we can consider a “Don’t Care” cell as 1 or 0 or we can

also ignore that cell. Therefore, “Don’t Care” condition can help us to form a larger group of cells.

A Don’t Care cell can be represented by a cross(X) in K-Maps representing a invalid combination.

For example, in Excess-3 code system, the states 0000, 0001, 0010, 1101, 1110 and 1111 are invalid

or unspecified. These states are called don’t cares.

A standard SOP function having don’t cares can be converted into a POS expression by keeping

don’t cares as they are, and writing the missing minterms of the SOP form as the maxterm of POS

form. Similarly, a POS function having don’t cares can be converted to SOP form keeping the don’t

cares as they are and writing the missing maxterms of the POS expression as the minterms of SOP

expression.

https://www.geeksforgeeks.org/k-mapkarnaugh-map/

PREPARED BY C.YAMINI (ASST PROF)

Example-1:

Minimise the following function in SOP minimal form using K-Maps:

f = m(1, 5, 6, 11, 12, 13, 14) + d(4)

Explanation:

The SOP K-map for the given expression is:

Therefore, SOP minimal is,

f = BC' + BCD' + A'C'D + AB'CD

Example-2:

Minimise the following function in POS minimal form using K-Maps:

F(A, B, C, D) = m(0, 1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15)

Explanation:

Writing the given expression in POS form:

F(A, B, C, D) = M(6, 7, 8, 9) + d(12, 13, 14, 15)

The POS K-map for the given expression is:

PREPARED BY C.YAMINI (ASST PROF)

Therefore, POS minimal is,

F = (A'+ C)(B' + C')

Significance of “Don’t Care” Conditions:

Don’t Care conditions has the following significance in designing of the digital circuits:

1. Simplification of the output:

These conditions denotes inputs that are invalid for a given digital circuit. Thus, they can used to

further simplify the boolean output expression of a digital circuit.

2. Reduction in number of gates required:

Simplification of the expression reduces the number of gates to be used for implementing the

given expression. Therefore, don’t cares make the digital circuit design more economical.

3. Reduced Power Consumption:

While grouping the terms long with don’t cares reduces switching of the states. This decreases

the memory space that is required to represent a given digital circuit which in turn results in less

power consumption.

4. Represent Invalid States in Code Converters:

These are used in code converters. For example- In design of 4-bit BCD-to-XS-3 code converter,

the input combinations 1010, 1011, 1100, 1101, 1110, and 1111 are don’t cares.

5. Prevention of Hazards in Digital Circuits:

Don’t cares also prevents hazards in digital systems.

16.Flip Flops

Do you know!! computers and calculators use Flip-flop for their memory. A combination of number

of flip flops will produce some amount of memory.

Flip flop is formed using logic gates, which are in turn made of transistors. Flip flop are basic building

blocks in the memory of electronic devices. Each flip flop can store one bit of data.

These are also called as sequential logic circuits. Also know these before learning about fliplfops.

PREPARED BY C.YAMINI (ASST PROF)

 Sequential Logic circuits

 Latches

Flip – flops have two stable states and hence they are bistable multivibrators. The two stable states are

High (logic 1) and Low (logic 0).

The term flip – flop is used as they can switch between the states under the influence of a control

signal (clock or enable) i.e. they can ‘flip’ to one state and ‘flop’ back to other state.

 Flip – flops are a binary storage device because they can store binary data (0 or 1).

 Flip – flops are edge sensitive or edge triggered devices i.e. they are sensitive to the transition

rather than the duration or width of the clock signal.

 They are also known as signal change sensitive devices which mean that the change in the level

of clock signal will bring change in output of the flip flop.

 A Flip – flop works depending on clock pulses.

 Flip flops are also used to control the digital circuit’s functionality. They can change the

operation of a digital circuit depending on the state.

Some of the most common flip – flops are SR Flip – flop (Set – Reset), D Flip – flop (Data or Delay),

JK Flip – flop and T Flip – flop.

Latches vs Flip-Flops

Latches and flip – flops are both 1 – bit binary data storage devices. The main difference between a

latch and a flip – flop is the triggering mechanism. Latches are transparent when enabled ,whereas flip

– flops are dependent on the transition of the clock signal i.e. either positive edge or negative edge.

The modern usage of the term flip – flop is reserved to clocked devices and term latch is to describe

much simpler devices. Some of the other differences between latches and flip – flops are listed in

below table.

https://www.electronicshub.org/sequential-circuits-basics/
https://www.electronicshub.org/latches/

PREPARED BY C.YAMINI (ASST PROF)

Types of flip flops

Based on their operations, flip flops are basically 4 types. They are

1. R-S flip flop

2. D flip flop

3. J-K flip flop

4. T flip flop

S-R Flip Flop

The S-R flip-flop is basic flip-flop among all the flip-flops. All the other flip flops are developed after

SR-flip-flop.

SR flip flop is represented as shown below.

https://www.electronicshub.org/wp-content/uploads/2015/04/111.jpg

PREPARED BY C.YAMINI (ASST PROF)

S-R stands for SET and RESET. This can also be called RS flip-flop. Difference is RS is inverted SR

flip-flop.

Any flip flop can be build using logic gates. NAND and NOR gates were used as they are universal

gates.

Here is the SR flip-flop using NAND gates.

PREPARED BY C.YAMINI (ASST PROF)

Truth Table of SR Flip Flop

Working

From the above truth table it is clear that SR flip flop will be set or reset for four conditions.

1. For last condition it will be in invalid state.

2. SR Flip-flop will be set when S=1 and R=0, if S=1 and R=1 then previous state is remembered

by the flip flop.

3. Flip-flop will be reset when S=0 and R=1, if S=1 and R=1, then it will remember the previous

state.

4. But when both the inputs are zeros, SR Flip flop will be in an uncertain state where both Q and

Q’ will be same. This is not same allowed..

This is indeterminate state is avoided by adding gates extra gates to the existing flip flop. This

is called clocked or gated SR Flip flop. This produces the output only for the High clock pulse.

The circuit of a clocked SR flip – flop using NAND gates is shown below.

Know in detail about SR Flip FlopD flip flop

D flip flop

In the SR flip flop an uncertain state occurred. This can be avoided by using D flip flop. Here D stands

for “Data”.

It is constructed from SR flip flop. The two inputs (S &R) of the clocked SR flip flop are connected to

an inverter.

https://www.electronicshub.org/sr-flip-flop-design-with-nor-and-nand-logic-gates/

PREPARED BY C.YAMINI (ASST PROF)

It is one of the most widely used flip – flops. It has a clock signal (Clk) as one input and Data (D) as

other. There are two outputs and these outputs are complement to each other. The symbol of D flip –

flop is shown below.

Truth table

D flip – flop using NAND gates is shown below.

Working

 D flip flop will work depending on the clock signal.

 When the clock is low there will be no change in the output of the flip flop i.e. it remembers the

previous state.

 When the clock signal is high and if it receives any data on its data pin, it Changes the state of

output.

 When data is high Q reset to 0,while Q is set to 0 if data is low.

A master slave D flip flop can be constructed using D-flip flop.

PREPARED BY C.YAMINI (ASST PROF)

Know in detail about D-flip flop.

J-K Flip Flop

JK flip – flop is named after Jack Kilby, an electrical engineer who invented IC.

A JK flip – flop is a modification of SR flip – flop. In this the J input is similar to the set input of SR

flip – flop and the K input is similar to the reset input of SR flip – flop. The condition J = K = 1 which

is not allowed in SR flip – flop (S = R = 1) is interpreted as a toggle command.

The JK flip flop has

 Two data inputs J and K.

 One clock signal input (CLK).

 Two outputs Q and Q’.

The symbol of a JK flip – flop is shown below.

Truth Table

The circuit of a JK flip – flop using gates is shown below. It is similar to a modified NAND SR flip –

flop.

https://www.electronicshub.org/d-flip-flop/

PREPARED BY C.YAMINI (ASST PROF)

Working

 When J is low and K is low, then Q returns its previous state value i.e. it holds the current state.

 When J is low and K is high, then flip – flop will be in reset state i.e. Q = 0, Q’ =1.

 When J is high and K is low then flip – flop will be in set state i.e. Q = 1, Q’ =0.

 When J is high and K is high then flip – flop will be in Toggle state or flip state. This means that

the output will complement to the previous state value.

To Know in detail about JK Flip Flop

T Flip Flop

T flip flop is also known as “Toggle Flip – flop”. Toggle is to change the output to complement of the

previous state in the presence of clock input signal.

The T flip flop has

 T input.

 One clock signal input (CLK).

 Two outputs Q and Q’.

The symbol of a T flip – flop is shown below.

https://www.electronicshub.org/jk-flipflop/

PREPARED BY C.YAMINI (ASST PROF)

We can construct a T flip – flop by using any other flip – flops.

 SR flip – flop: By connecting the feedback of outputs of SR flip – flop to the inputs (S & R).

 D flip – flop: Connecting the Q’ to its Data input of D flip – flop as feedback path.

 J K flip – flop: By combing the J & K inputs of JK flip – flop, to make as single input, we can

design the T flip – flop.

Truth Table

The circuit of a T flip – flop made from NAND JK flip – flop is shown below.

PREPARED BY C.YAMINI (ASST PROF)

Working

The operation of the T flip flop is explained below.

When the T input is low, then the next sate of the T flip – flop is same as the present state i.e. it holds

the current state.

 T = 0 and present state = 0 then the next state = 0.

 T = 0 and present state = 1 then the next state = 1.

When the T input is high, then the next sate of the T flip – flop is toggled i.e. it is same as the

complement of present state on clock transition.

 T = 1 and present state = 0 then the next state = 1.

 T = 1 and present state = 1 then the next state = 0.

Know in detail about T-Flip flop

WHERE WE USE FLIP FLOPS??

Flip flops are widely used in

 Registers: As the flip flops have two stable states, we use them in memory elements like

registers, for data storage. Generally we use registers in electronic devices like computers.

https://www.electronicshub.org/t-flip-flop/

PREPARED BY C.YAMINI (ASST PROF)

 Counters: The groups of interconnected flip flops are uses as counters, to count the increment or

decrement of an event occurrence.

 Frequency division: Flip flops are used as frequency division circuits, which divide the input

frequency to exactly to its half. Frequency division circuits are used to regularize the frequency

of electronic circuits.

 Data transfer: We use shift registers (A special-type of registers) to transfer the data from one

flip flop to another, which are connected in a specific order.

17.Encoders and Decoders in Digital Logic
Binary code of N digits can be used to store 2N distinct elements of coded information. This is what

encoders and decoders are used for. Encoders convert 2N lines of input into a code of N bits

and Decoders decode the N bits into 2N lines.

1. Encoders –
An encoder is a combinational circuit that converts binary information in the form of a 2N input lines

into N output lines, which represent N bit code for the input. For simple encoders, it is assumed that

only one input line is active at a time.

As an example, let’s consider Octal to Binary encoder. As shown in the following figure, an octal-

to-binary encoder takes 8 input lines and generates 3 output lines.

Truth Table –

D7 D6 D5 D4 D3 D2 D1 D0 X Y Z

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

PREPARED BY C.YAMINI (ASST PROF)

D7 D6 D5 D4 D3 D2 D1 D0 X Y Z

1 0 0 0 0 0 0 0 1 1 1

As seen from the truth table, the output is 000 when D0 is active; 001 when D1 is active; 010 when

D2 is active and so on.

Implementation –

From the truth table, the output line Z is active when the input octal digit is 1, 3, 5 or 7. Similarly, Y

is 1 when input octal digit is 2, 3, 6 or 7 and X is 1 for input octal digits 4, 5, 6 or 7. Hence, the

Boolean functions would be:

X = D4 + D5 + D6 + D7

Y = D2 +D3 + D6 + D7

Z = D1 + D3 + D5 + D7

Hence, the encoder can be realised with OR gates as follows:

One limitation of this encoder is that only one input can be active at any given time. If m

One limitation of this encoder is that only one input can be active at any given time. If more than one

inputs are active, then the output is undefined. For example, if D6 and D3 are both active, then, our

output would be 111 which is the output for D7. To overcome this, we use Priority Encoders.

Another ambiguity arises when all inputs are 0. In this case, encoder outputs 000 which actually is

the output for D0 active. In order to avoid this, an extra bit can be added to the output, called the

valid bit which is 0 when all inputs are 0 and 1 otherwise.

Priority Encoder –

A priority encoder is an encoder circuit in which inputs are given priorities. When more than one

inputs are active at the same time, the input with higher priority takes precedence and the output

corresponding to that is generated.

Let us consider the 4 to 2 priority encoder as an example.

From the truth table, we see that when all inputs are 0, our V bit or the valid bit is zero and outputs

are not used. The x’s in the table show the don’t care condition, i.e, it may either be 0 or 1. Here, D3

has highest priority, therefore, whatever be the other inputs, when D3 is high, output has to be 11.

And D0 has the lowest priority, therefore the output would be 00 only when D0 is high and the other

input lines are low. Similarly, D2 has higher priority over D1 and D0 but lower than D3 therefore the

output would be 010 only when D2 is high and D3 are low (D0 & D1 are don’t care).

PREPARED BY C.YAMINI (ASST PROF)

Truth Table –

D3 D2 D1 D0 X Y V

0 0 0 0 x x 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

1 x x x 1 1 1

Implementation –

It can clearly be seen that the condition for valid bit to be 1 is that at least any one of the inputs

should be high. Hence,

V = D0 + D1 + D2 + D3

For X:

=> X = D2 + D3

For Y:

PREPARED BY C.YAMINI (ASST PROF)

=> Y = D1 D2’ + D3

Hence, the priority 4-to-2 encoder can be realized as follows:

2. Decoders –

A decoder does the opposite job of an encoder. It is a combinational circuit that converts n lines of

input into 2n lines of output.

Let’s take an example of 3-to-8 line decoder.

Truth Table –

X Y Z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

PREPARED BY C.YAMINI (ASST PROF)

X Y Z D0 D1 D2 D3 D4 D5 D6 D7

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

Implementation –
D0 is high when X = 0, Y = 0 and Z = 0. Hence,

D0 = X’ Y’ Z’

Similarly,

D1 = X’ Y’ Z

D2 = X’ Y Z’

D3 = X’ Y Z

D4 = X Y’ Z’

D5 = X Y’ Z

D6 = X Y Z’

D7 = X Y Z

Hence,

PREPARED BY C.YAMINI (ASST PROF)

18.Shift Registers in Digital LogicFlip flops can be used to store a single bit of binary data

(1or 0). However, in order to store multiple bits of data, we need multiple flip flops. N flip flops are

to be connected in an order to store n bits of data. A Register is a device which is used to store such

information. It is a group of flip flops connected in series used to store multiple bits of data.

The information stored within these registers can be transferred with the help of shift registers. Shift

Register is a group of flip flops used to store multiple bits of data. The bits stored in such registers

can be made to move within the registers and in/out of the registers by applying clock pulses. An n-

bit shift register can be formed by connecting n flip-flops where each flip flop stores a single bit of

data.

The registers which will shift the bits to left are called “Shift left registers”.

The registers which will shift the bits to right are called “Shift right registers”.

Shift registers are basically of 4 types. These are:

1. Serial In Serial Out shift register

2. Serial In parallel Out shift register

3. Parallel In Serial Out shift register

4. Parallel In parallel Out shift register

Serial-In Serial-Out Shift Register (SISO) –

The shift register, which allows serial input (one bit after the other through a single data line) and

produces a serial output is known as Serial-In Serial-Out shift register. Since there is only one

output, the data leaves the shift register one bit at a time in a serial pattern, thus the name Serial-In

Serial-Out Shift Register.

PREPARED BY C.YAMINI (ASST PROF)

The logic circuit given below shows a serial-in serial-out shift register. The circuit consists of four D

flip-flops which are connected in a serial manner. All these flip-flops are synchronous with each

other since the same clock signal is applied to each flip flop.

The above circuit is an example of shift right register, taking the serial data input from the left side

of the flip flop. The main use of a SISO is to act as a delay element.

Serial-In Parallel-Out shift Register (SIPO) –

The shift register, which allows serial input (one bit after the other through a single data line) and

produces a parallel output is known as Serial-In Parallel-Out shift register.

The logic circuit given below shows a serial-in-parallel-out shift register. The circuit consists of four

D flip-flops which are connected. The clear (CLR) signal is connected in addition to the clock signal

to all the 4 flip flops in order to RESET them. The output of the first flip flop is connected to the

input of the next flip flop and so on. All these flip-flops are synchronous with each other since the

same clock signal is applied to each flip flop.

The above circuit is an example of shift right register, taking the serial data input from the left side

of the flip flop and producing a parallel output. They are used in communication lines where

demultiplexing of a data line into several parallel lines is required because the main use of the SIPO

register is to convert serial data into parallel data.

PREPARED BY C.YAMINI (ASST PROF)

Parallel-In Serial-Out Shift Register (PISO) –

The shift register, which allows parallel input (data is given separately to each flip flop and in a

simultaneous manner) and produces a serial output is known as Parallel-In Serial-Out shift register.

The logic circuit given below shows a parallel-in-serial-out shift register. The circuit consists of four

D flip-flops which are connected. The clock input is directly connected to all the flip flops but the

input data is connected individually to each flip flop through a multiplexer at the input of every flip

flop. The output of the previous flip flop and parallel data input are connected to the input of the

MUX and the output of MUX is connected to the next flip flop. All these flip-flops are synchronous

with each other since the same clock signal is applied to each flip flop.

A Parallel in Serial out (PISO) shift register us used to convert parallel data to serial data.

Parallel-In Parallel-Out Shift Register (PIPO) –

The shift register, which allows parallel input (data is given separately to each flip flop and in a

simultaneous manner) and also produces a parallel output is known as Parallel-In parallel-Out shift

register.

The logic circuit given below shows a parallel-in-parallel-out shift register. The circuit consists of

four D flip-flops which are connected. The clear (CLR) signal and clock signals are connected to all

the 4 flip flops. In this type of register, there are no interconnections between the individual flip-

flops since no serial shifting of the data is required. Data is given as input separately for each flip

flop and in the same way, output also collected individually from each flip flop.

PREPARED BY C.YAMINI (ASST PROF)

A Parallel in Parallel out (PIPO) shift register is used as a temporary storage device and like SISO

Shift register it acts as a delay element.

Bidirectional Shift Register –

If we shift a binary number to the left by one position, it is equivalent to multiplying the number by

2 and if we shift a binary number to the right by one position, it is equivalent to dividing the number

by 2.To perform these operations we need a register which can shift the data in either direction.

Bidirectional shift registers are the registers which are capable of shifting the data either right or left

depending on the mode selected. If the mode selected is 1(high), the data will be shifted towards the

right direction and if the mode selected is 0(low), the data will be shifted towards the left direction.

The logic circuit given below shows a Bidirectional shift register. The circuit consists of four D flip -

flops which are connected. The input data is connected at two ends of the circuit and depending on

the mode selected only one and gate is in the active state.

PREPARED BY C.YAMINI (ASST PROF)

Shift Register Counter –

Shift Register Counters are the shift registers in which the outputs are connected back to the inputs

in order to produce particular sequences. These are basically of two types:

1. Ring Counter –
A ring counter is basically a shift register counter in which the output of the first flip flop is

connected to the next flip flop and so on and the output of the last flip flop is again fed back to

the input of the first flip flop, thus the name ring counter. The data pattern within the shift

register will circulate as long as clock pulses are applied.

The logic circuit given below shows a Ring Counter. The circuit consists of four D flip-flops

which are connected. Since the circuit consists of four flip flops the data pattern will repeat after

every four clock pulses as shown in the truth table below:

PREPARED BY C.YAMINI (ASST PROF)

A Ring counter is generally used because it is self-decoding. No extra decoding circuit is needed

to determine what state the counter is in.

2. Johnson Counter –
A Johnson counter is basically a shift register counter in which the output of the first flip flop is

connected to the next flip flop and so on and the inverted output of the last flip flop is again fed

back to the input of the first flip flop. They are also known as twisted ring counters.

The logic circuit given below shows a Johnson Counter. The circuit consists of four D flip-flops

which are connected. An n-stage Johnson counter yields a count sequence of 2n different states,

thus also known as a mod-2n counter. Since the circuit consists of four flip flops the data pattern

will repeat every eight clock pulses as shown in the truth table below:

PREPARED BY C.YAMINI (ASST PROF)

The main advantage of Johnson counter is that it only needs n number of flip-flops compared to

the ring counter to circulate a given data to generate a sequence of 2n states.

Applications of shift Registers –

 The shift registers are used for temporary data storage.

 The shift registers are also used for data transfer and data manipulation.

PREPARED BY C.YAMINI (ASST PROF)

 The serial-in serial-out and parallel-in parallel-out shift registers are used to produce time delay

to digital circuits.

 The serial-in parallel-out shift register is used to convert serial data into parallel data thus they

are used in communication lines where demultiplexing of a data line into several parallel line is

required.

 A Parallel in Serial out shift register us used to convert parallel data to serial data.

19.Counters in Digital Logic

According to Wikipedia, in digital logic and computing, a Counter is a device which stores (and

sometimes displays) the number of times a particular event or process has occurred, often in

relationship to a clock signal. Counters are used in digital electronics for counting purpose, they can

count specific event happening in the circuit. For example, in UP counter a counter increases count

for every rising edge of clock. Not only counting, a counter can follow the certain sequence based on

our design like any random sequence 0,1,3,2… .They can also be designed with the help of flip

flops.

Counter Classification

Counters are broadly divided into two categories

1. Asynchronous counter

2. Synchronous counter

1. Asynchronous Counter

In asynchronous counter we don’t use universal clock, only first flip flop is driven by main clock and

the clock input of rest of the following flip flop is driven by output of previous flip flops. We can

understand it by following diagram-

It is evident from timing diagram that Q0 is changing as soon as the rising edge of clock pulse is

encountered, Q1 is changing when rising edge of Q0 is encountered(because Q0 is like clock pulse

https://en.wikipedia.org/wiki/Counter_(digital)
https://media.geeksforgeeks.org/wp-content/uploads/counters-in-digital-logic.png

PREPARED BY C.YAMINI (ASST PROF)

for second flip flop) and so on. In this way ripples are generated through Q0,Q1,Q2,Q3 hence it is

also called RIPPLE counter.

2. Synchronous Counter

Unlike the asynchronous counter, synchronous counter has one global clock which drives each flip

flop so output changes in parallel. The one advantage of synchronous counter over asynchronous

counter is, it can operate on higher frequency than asynchronous counter as it does not have

cumulative delay because of same clock is given to each flip flop.

 Synchronous counter circuit

Timing diagram synchronous counter

From circuit diagram we see that Q0 bit gives response to each falling edge of clock while Q1 is

dependent on Q0, Q2 is dependent on Q1 and Q0 , Q3 is dependent on Q2,Q1 and Q0.

Decade Counter
A decade counter counts ten different states and then reset to its initial states. A simple decade

counter will count from 0 to 9 but we can also make the decade counters which can go through any

ten states between 0 to 15(for 4 bit counter).

https://media.geeksforgeeks.org/wp-content/uploads/synchronous-counters.png

PREPARED BY C.YAMINI (ASST PROF)

Clock

pulse Q3 Q2 Q1 Q0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 0 0 0 0

 Truth table for simple decade counter

Decade counter circuit diagram

https://media.geeksforgeeks.org/wp-content/uploads/decade-counter-circuit-diagram.png

PREPARED BY C.YAMINI (ASST PROF)

We see from circuit diagram that we have used nand gate for Q3 and Q1 and feeding this to clear

input line because binary representation of 10 is—

1010

And we see Q3 and Q1 are 1 here, if we give NAND of these two bits to clear input then counter will

be clear at 10 and again start from beginning.

Important point: Number of flip flops used in counter are always greater than equal to

(log2 n) where n=number of states in counter.

20.Multiplexers in Digital LogicIt is a combinational circuit which have many data

inputs and single output depending on control or select inputs. For N input lines, log n (base2)

selection lines, or we can say that for 2n input lines, n selection lines are required. Multiplexers are

also known as “Data n selector, parallel to serial convertor, many to one circuit, universal logic

circuit”. Multiplexers are mainly used to increase amount of the data that can be sent over the

network within certain amount of time and bandwidth.

Now the implementation of 4:1 Multiplexer using truth table and gates.

PREPARED BY C.YAMINI (ASST PROF)

Multiplexer can act as universal combinational circuit. All the standard logic gates can be

implemented with multiplexers.

a) Implementation of NOT gate using 2 : 1 Mux
NOT Gate :

We can analyze it

Y = x’.1 + x.0 = x’

It is NOT Gate using 2:1 MUX.

The implementation of NOT gate is done using “n” selection lines. It cannot be implemented using

“n-1” selection lines. Only NOT gate cannot be implemented using “n-1” selection lines.

PREPARED BY C.YAMINI (ASST PROF)

b) Implementation of AND gate using 2 : 1 Mux
AND GATE

This implementation is done using “n-1” selection lines.

c) Implementation of OR gate using 2 : 1 Mux using “n-1” selection lines.

OR GATE

Implementation of NAND, NOR, XOR and XNOR gates requires two 2:1 Mux. First multiplexer

will act as NOT gate which will provide complemented input to the second multiplexer.

d) Implementation of NAND gate using 2 : 1 Mux
NAND GATE

PREPARED BY C.YAMINI (ASST PROF)

e) Implementation of NOR gate using 2 : 1 Mux
NOR GATE

f) Implementation of EX-OR gate using 2 : 1 Mux

EX-OR GATE

PREPARED BY C.YAMINI (ASST PROF)

g) Implementation of EX-NOR gate using 2 : 1 Mux
EX-NOR GATE

Implementation of Higher order MUX using lower order MUX

a) 4 : 1 MUX using 2 : 1 MUX
Three(3) 2 : 1 MUX are required to implement 4 : 1 MUX.

Similarly,

PREPARED BY C.YAMINI (ASST PROF)

While 8 : 1 MUX require seven(7) 2 : 1 MUX, 16 : 1 MUX require fifteen(15) 2 :1 MUX, 64 : 1

MUX requires sixty three(63) 2 : 1 MUX.

Hence, we can draw a conclusion,

2n : 1 MUX requires (2^n – 1) 2 : 1 MUX.

b) 16 : 1 MUX using 4 : 1 MUX

In general, to implement B : 1 MUX using A : 1 MUX , one formula is used to implement the same.

B / A = K1,

PREPARED BY C.YAMINI (ASST PROF)

K1/ A = K2,

K2/ A = K3

………………

KN-1 / A = KN = 1 (till we obtain 1 count of MUX).

And then add all the numbers of MUXes = K1 + K2 + K3 + …. + KN.

For example : To implement 64 : 1 MUX using 4 : 1 MUX

Using the above formula, we can obtain the same.

64 / 4 = 16

16 / 4 = 4

4 / 4 = 1 (till we obtain 1 count of MUX)

Hence, total number of 4 : 1 MUX are required to implement 64 : 1 MUX = 16 + 4 + 1 = 21.

An example to implement a boolean function if minimal and don’t care terms are given using

MUX.

f (A, B, C) = Σ (1, 2, 3, 5, 6) with don’t care (7) using 4 : 1 MUX using as

a) AB as select : Expanding the minterms to its boolean form and will see its 0 or 1 value in Cth

place so that they can be placed in that manner.

b) AC as select : Expanding the minterms to its boolean form and will see its 0 or 1 value in Bth

place so that they can be place in that manner.

PREPARED BY C.YAMINI (ASST PROF)

c) BC as select : Expanding the minterms to its boolean form and will see its 0 or 1 value in

Ath place so that they can be place in that manner.

21.Programmable Logic Devices
A logic device is an electronic component which performs a definite function which is decided at the

time of manufacture and will never change. For example, a not gate always inverts the logic level of

the input signal and does/can-do-nothing else. On the other hand, Programmable Logic Devices

(PLDs) are the components which do not have a specific function associated with them. These can be

configured to perform a certain function by the user, on a need basis and can further be changed to

perform some other function at the later point of time, i.e. these are re-configurable. However, the

amount of flexibility offered depends on their type.

Types of Programmable Logic Devices

Programmable Logic Array (PLA)

This device comprises of programmable AND gate and OR gate arrays which are to be configured by

the user to obtain the output.

Programmable Array Logic (PAL)

PALs use an OR gate array with fixed logic while an AND gate array which can be programmed as per

the requirement of the user. As a result, these devices express the output as a combination of inputs in

sum-of-products form.

https://www.electrical4u.com/not-gate/
https://www.electrical4u.com/logical-and-gate/
https://www.electrical4u.com/logical-or-gate/

PREPARED BY C.YAMINI (ASST PROF)

Generic Logic Array (GLA)

These devices had their properties similar to those of PALs in addition to which they were electrically

erasable and re-programmable. This important feature proved to be meritorious as it considerably

eased the prototype design which in turn reduced the time to market.

Complex Programmable Logic Device (CPLD)

CPLDs are denser than PALs and comprise of a large number of programmable logical elements. The

interconnection between these macro cells is to be established by the user through the interconnecting

network. Here sum-of-product establishing logical elements are combined together to form structures

in order to reduce the number of input-output (IO) pins. This facilitates the implementation of more

complex logic design with slightly worse propagation time when compared to that of PALs. These

offer predictable timing characteristics making them most suitable for critical control applications with

high performance. CPLDs are preferred to implement combinational logic based designs.

22.Introduction of Sequential Circuits

A Sequential circuit combinational logic circuit that consists of inputs variable (X), logic gates

(Computational circuit), and output variable (Z).

Combinational circuit produces an output based on input variable only, but Sequential

circuit produces an output based on current input and previous input variables. That means

sequential circuits include memory elements which are capable of storing binary information. That

binary information defines the state of the sequential circuit at that time. A latch capable of storing

one bit of information.

Unit-2

1.Memory locations and addresses: Memory locations and addresses determine how the computer’s

memory is organized so that the user can efficiently store or retrieve information from the computer.

The computer’s memory is made of a silicon chip which has millions of storage cell, where each storage

cell is capable to store a bit of information which value is either 0 or 1.

But the fact is, computer memory holds instructions and data. And a single bit is very small to hold this
information so bits are rarely used individually. As a solution to this, the bits are grouped in fixed sizes of n bits.

PREPARED BY C.YAMINI (ASST PROF)

The memory of the computer is organized in such a way that the group of these n bits can be stored and
retrieved easily by the computer in a single operation.

The group of n bit is termed as word where n is termed as the word length. The word length of the computer
has evolved from 8, 16, 24, 32 to 64 bits. General-purpose computers nowadays have 32 to 64 bits. The group
of 8 bit is called a byte.

Now, whenever you want to store any instruction or data may it be of a byte or a word you have to access a
memory location. To access the memory location either you must know the memory location by its unique name
or it is required to provide a unique address to each memory location.

The memory locations are addressed from 0 to 2K-1 i.e. a memory has 2K addressable locations. And thus the
address space of the computer has 2K addresses. Let us try some suitable values for K.

210 = 1024 = 1K (Kilobyte)
220 = 1,048,576 = 1M (Megabyte)
230 = 1073741824 = 1G (Gigabyte)
240 = 1.0995116e+12 = 1T (Terabyte)

Byte Addressability

Till now we have gone through three information storing quantities bit, byte and word. We have seen above that
8 bits together form a byte and this is the fix for every memory. But the word length varies from memory to
memory and it ranges from 16 to 64 bit.

Well, it is impossible to allot a unique address to each bit in memory. As a solution, most modern computers
assign successive addresses to successive byte locations in memory. This assignment of addresses to
individual byte locations is termed byte addressability and memory is referred to as byte-addressable memory.

If we assign an address to individual byte locations in the memory like 0, 1, 2, 3…. .Now if the word length of the
machine is 16 bit then the successive words are located at addresses 0, 2, 4, 6… where each word would have
2 bytes of information. Similarly, if we have a machine with a word length of 32 bit then the successive words
are located at the addresses 0, 4, 8, 12… where each word would have 4 bytes of information and it could store
or retrieve 4 bytes of instruction or data in a single and basic operation.

Big-Endian and Little-Endian Assignments in Byte Addresses

The big-endian and little-endian are two methods of assigning byte addresses across the words in the memory.
In the big-endian assignment, the lower byte addresses are used for the leftmost bytes of the word. Observe
the word 0 in the image below, the leftmost bytes of the word have lower byte addresses.

PREPARED BY C.YAMINI (ASST PROF)

In the little-endian assignment, the lower byte addresses are used for the rightmost bytes of the word.
Observe the word 0 in the image below the rightmost bytes of word 0 has lower byte addresses.

The leftmost bytes of the word are termed as most significant bytes and the rightmost bytes of the words are
termed as least significant bytes.

Thus the big-endian and little-endian specify the ordering of bytes inside a word. Similarly, the bits must be
labelled inside the byte or a word and the most common way of labelling bits in a byte or word is as shown in
the figure below i.e. labelling the bits as b7, b6,…….,b1, b0 from left to write as we do in little-endian assignment.

Word Alignment

In a machine with word length 32-bit, the word boundaries occur at the bytes addresses 0, 4, 8… It is said that
the word has aligned addresses if they begin with the byte address that is multiple of the number of bytes
present in that word. For example, the word address 4 has four bytes in it with byte address 4, 5 and 6. The
word address 4 starts with the byte address 4 which is multiple of the number of bytes in word 4.

In case if the word address begins with the arbitrary byte address the word is said to have unaligned addresses.
But conventionally the words have aligned addresses as this lets the access of memory operand more
efficiently.

PREPARED BY C.YAMINI (ASST PROF)

Memory Operations

So, this is all about the memory locations and how they are addressed to store and retrieve the instructions or
data more efficiently. With memory addresses, it becomes easy to identify a specific memory location.

 There are two key operations on memory:
1. fetch(address) returns value without changing the value stored at that address.
2. store(address, value) writes new value into the cell at the given address.

 This type of memory is random-access, meaning that CPU can access any value of the array at any
time (vs. sequential access, like on a tape).

 Such memories are called RAM (random-access memory.)

 Some memory is non-volatile, or read-only (ROM or read-only memory.)

Both program instructions and data operands are stored in the memory. To execute an instruction, the

processor control circuits must cause the word (or words) containing the instruction to be transferred from the

memory to the processor. Operands and results must also be moved between the memory and the processor.

Thus, two basic operations involving the memory are needed, namely, Read and Write.

• Two memory operations are:

1) Load (Read/Fetch) &

2) Store (Write).

• The Load operation transfers a copy of the contents of a specific memory-location to the processor.

The memory contents remain unchanged.

• Steps for Load operation:

1) Processor sends the address of the desired location to the memory.

2) Processor issues „read‟ signal to memory to fetch the data.

3) Memory reads the data stored at that address.

4) Memory sends the read data to the processor

PREPARED BY C.YAMINI (ASST PROF)

• The Store operation transfers the information from the register to the specified memory-location. This will

destroy the original contents of that memory-location.

• Steps for Store operation are:

1) Processor sends the address of the memory-location where it wants to store data.

2) Processor issues „write‟ signal to memory to store the data.

3) Content of register(MDR) is written into the specified memory-location.

INSTRUCTIONS & INSTRUCTION SEQUENCING

The tasks carried out by a computer program consist of a sequence of small steps, suchas adding two numbers,

testing for a particular condition, reading a character from the keyboard, or sending a character to be displayed

on a display screen.

• A computer must have instructions capable of performing 4 types of operations:

1) Data transfers between the memory and the registers (MOV, PUSH, POP, XCHG).

2) Arithmetic and logic operations on data (ADD, SUB, MUL, DIV, AND, OR, NOT).

3) Program sequencing and control(CALL.RET, LOOP, INT).

4) I/0 transfers (IN, OUT).

REGISTER TRANSFER NOTATION (RTN)

Here we describe the transfer of information from one location in a computer to another.Possible locations that

may be involved in such transfers are memory locations, processor registers, or registers in the I/O subsystem.

Most of the time, we identify such locationssymbolically with convenient names.

• The possible locations in which transfer of information occurs are:

1) Memory-location

2) Processor register &

3) Registers in I/O device.

INSTRUCTION EXECUTION & STRAIGHT LINE SEQUENCING

• The program is executed as follows:

1) Initially, the address of the first instruction is loaded into PC (Figure 2.8).

2) Then, the processor control circuits use the information in the PC to fetch and execute instructions, one at a

time, in the order of increasing addresses.

This is called Straight-Line sequencing.

3) During the execution of each instruction, PC is incremented by 4 to point to next instruction.

• There are 2 phases for Instruction Execution:

1) Fetch Phase: The instruction is fetched from the memory-location and placed in the IR.

2) Execute Phase: The contents of IR is examined to determine which operation is to beperformed. The

specified-operation is then performed by the processor.

PREPARED BY C.YAMINI (ASST PROF)

Program Explanation

• Consider the program for adding a list of n numbers (Figure 2.9).

• The Address of the memory-locations containing the n numbers are symbolically given as NUM1,

NUM2…..NUMn.

• Separate Add instruction is used to add each number to the contents of register R0.

• After all the numbers have been added, the result is placed in memory-location SUM.

PREPARED BY C.YAMINI (ASST PROF)

Addressing Modes:
Addressing Modes– The term addressing modes refers to the way in which the operand of an instruction is
specified. The addressing mode specifies a rule for interpreting or modifying the address field of the
instruction before the operand is actually executed.
Addressing modes for 8086 instructions are divided into two categories:
1) Addressing modes for data

2) Addressing modes for branch

The 8086 memory addressing modes provide flexible access to memory, allowing you to easily access
variables, arrays, records, pointers, and other complex data types. The key to good assembly language
programming is the proper use of memory addressing modes.

The memory address of an operand consists of two components:
IMPORTANT TERMS

 Starting address of memory segment.

 Effective address or Offset: An offset is determined by adding any combination of three address
elements: displacement, base and index.

 Displacement: It is an 8 bit or 16 bit immediate value given in the instruction.

 Base: Contents of base register, BX or BP.

 Index: Content of index register SI or DI.
According to different ways of specifying an operand by 8086 microprocessor, different addressing modes are
used by 8086.

Addressing modes used by 8086 microprocessor are discussed below:

PREPARED BY C.YAMINI (ASST PROF)

 Implied mode:: In implied addressing the operand is specified in the instruction itself. In this mode the
data is 8 bits or 16 bits long and data is the part of instruction.Zero address instruction are designed with
implied addressing mode.

Example: CLC (used to reset Carry flag to 0)

 Immediate addressing mode (symbol #):In this mode data is present in address field of instruction
.Designed like one address instruction format.
Note:Limitation in the immediate mode is that the range of constants are restricted by size of address
field.

Example: MOV AL, 35H (move the data 35H into AL register)

 Register mode: In register addressing the operand is placed in one of 8 bit or 16 bit general purpose
registers. The data is in the register that is specified by the instruction.
Here one register reference is required to access the data.

 Register Indirect mode: In this addressing the operand’s offset is placed in any one of the registers

BX,BP,SI,DI as specified in the instruction. The effective address of the data is in the base register or an
index register that is specified by the instruction.
Here two register reference is required to access the data.

The 8086
CPUs let you access memory indirectly through a register using the register indirect addressing modes.

 MOV AX, [BX](move the contents of memory location s

addressed by the register BX to the register AX)

 Auto Indexed (increment mode): Effective address of the operand is the contents of a register specified
in the instruction. After accessing the operand, the contents of this register are automatically incremented
to point to the next consecutive memory location.(R1)+.
Here one register reference,one memory reference and one ALU operation is required to access the data.
Example:

 Add R1, (R2)+ // OR

 R1 = R1 +M[R2]

R2 = R2 + d

Useful for stepping through arrays in a loop. R2 – start of array d – size of an element

 Auto indexed (decrement mode): Effective address of the operand is the contents of a register
specified in the instruction. Before accessing the operand, the contents of this register are automatically
decremented to point to the previous consecutive memory location. –(R1)
Here one register reference,one memory reference and one ALU operation is required to access the data.
Example:
Add R1,-(R2) //OR

R2 = R2-d

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_2.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_3.jpg
https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_4.jpg

PREPARED BY C.YAMINI (ASST PROF)

R1 = R1 + M[R2]
Auto decrement mode is same as auto increment mode. Both can also be used to implement a stack as
push and pop . Auto increment and Auto decrement modes are useful for implementing “Last-In-First-Out”
data structures.

 Direct addressing/ Absolute addressing Mode (symbol []): The operand’s offset is given in the
instruction as an 8 bit or 16 bit displacement element. In this addressing mode the 16 bit effective
address of the data is the part of the instruction.
Here only one memory reference operation is required to access the data.

Example:ADD AL,[0301] //add the contents of offset address 0301 to AL

 Indirect addressing Mode (symbol @ or ()):In this mode address field of instruction contains the
address of effective address.Here two references are required.
1st reference to get effective address.
2nd reference to access the data.
Based on the availability of Effective address, Indirect mode is of two kind:

1. Register Indirect:In this mode effective address is in the register, and corresponding register name
will be maintained in the address field of an instruction.
Here one register reference,one memory reference is required to access the data.

2. Memory Indirect:In this mode effective address is in the memory, and corresponding memory address
will be maintained in the address field of an instruction.
Here two memory reference is required to access the data.

 Indexed addressing mode: The operand’s offset is the sum of the content of an index register SI or DI
and an 8 bit or 16 bit displacement.
Example:MOV AX, [SI +05]

 Based Indexed Addressing: The operand’s offset is sum of the content of a base register BX or BP and
an index register SI or DI.
Example: ADD AX, [BX+SI]

Based on Transfer of control, addressing modes are:

 PC relative addressing mode: PC relative addressing mode is used to implement intra
segment transfer of control, In this mode effective address is obtained by adding
displacement to PC.

 EA= PC + Address field value

PC= PC + Relative value.

 Base register addressing mode:Base register addressing mode is used to implement inter
segment transfer of control.In this mode effective address is obtained by adding base register
value to address field value.

 EA= Base register + Address field value.

PC= Base register + Relative value.

Unit-3

1.Accessing I/O Devices.: In computing, input/output, or I/O, refers to the communication between an

information processing system (computer), and the outside world. Inputs are the signals or data

received by the system, and outputs are the signals or data sent from it. I/O devices are used by a

person (or other system) to communicate with a computer.

Some of the input devices are keyboard, mouse, track ball, joy stick, touch screen, digital camera,

webcam, image scanner, fingerprint scanner, barcode reader, microphone and so on. Some of the

output devices are speakers, headphones, monitors and printers. Devices for communication between

computers, such as modems and network cards, typically serve for both input and output. I/O devices

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Addressing_Modes_5.jpg

PREPARED BY C.YAMINI (ASST PROF)

can be connected to a computer through a single bus which enables the exchange of information. The

bus consists of three sets of lines used to carry address, data, and control signals. Each I/O device is

assigned a unique set of addresses. When the processor places a particular address on the address lines,

the device that recognizes this address responds to the commands issued on the control lines. The

processor requests either a read or a write operation, and the requested data are transferred over the

data lines. Figure 5.1 shows the simple arrangement of I/O devices to processor and memory with

single bus.

Figure 5.1 A Single bus structure

Memory-mapped I/O: The arrangement of I/O devices and the memory share the same address space is

called memory-mapped I/O. With memory-mapped I/O, any machine instruction that can access

memory can be used to transfer data to or from an I/O device. For example, if DATAIN is the address

of the input buffer associated with the keyboard, the instruction

Move DATAIN,R0
reads the data from DATAIN and stores them into processor register RO. Similarly, the instruction

Move R0,DATAOUT
sends the contents of register R0 to location DATAOUT, which may be the output data buffer of a

display unit or a printer. Most computer systems use memory-mapped I/O. Some processors have

special In and Out instructions to perform I/O transfers.

Figure 5.2 illustrates the hardware required to connect an I/O device to the bus. The address decoder

enables the device to recognize its address when this address appears on the address lines. The data

register holds the data being transferred to or from the processor. The status register contains

information relevant to the operation of the I/O device. Both the data and status registers are connected

to the data bus and assigned unique addresses. The address decoder, the data and status registers, and

the control circuitry required to coordinate I/O transfers constitute the device's interface circuit.

PREPARED BY C.YAMINI (ASST PROF)

I/O devices operate at speeds that are vastly different from that of the processor. When a human

operator is entering characters at a keyboard, the processor is capable of executing millions of

instructions between successive character entries. An instruction that reads a character from the

keyboard should be executed only when a character is available in the input buffer of the keyboard

interface. An input character is read only once.

For an input device such as a keyboard, a status flag, SIN, is included in the interface circuit as part of

the status register. This flag is set to 1 when a character is entered at the keyboard and cleared to 0

once this character is read by the processor. Hence, by checking the SIN flag, the software can ensure

that it is always reading valid data. This is often accomplished in a program loop that repeatedly reads

the status register and checks the state of SIN. When SIN becomes equal to 1, the program reads the

input data register. A similar procedure can be used to control output operations using an output status

flag, SOUT

Program-controlled I/O: Consider a simple example of I/O operations involving a keyboard and a

display device in a computer system. The four registers shown in Figure 5.3 are used in the data

transfer operations. Register STATUS contains two control flags, SIN and SOUT, which provide

status information for the keyboard and the display unit, respectively. The two flags KIRQ and DIRQ

in this register are used in conjunction with interrupts. They, and the KEN and DEN bits in register

CONTROL, Data from the keyboard are made available in the DATAIN register, and data sent to the

display are stored in the DATAOUT register.

The program in Figure 5.4 reads a line of characters from the keyboard and stores it in a memory

buffer starting at location LINE. Then, it calls a subroutine PROCESS to process the input line. As

each character is read, it is echoed back to the display. Register R0 is used as a pointer to the memory

buffer area. The contents of R0 are updated using the Autoincrement addressing mode so that

successive characters are stored in successive memory locations. Each character is checked to see if it

PREPARED BY C.YAMINI (ASST PROF)

is the Carriage Return (CR) character, which has the ASCII code 0D (hex). If it is, a Line Feed

character (ASCII code 0A) is sent to move the cursor one line down on the display and subroutine

PROCESS is called. Otherwise, the program loops back to wait for another character from the

keyboard.

In program-controlled I/O the processor repeatedly checks a status flag to achieve the required

synchronization between the processor and an input or output device. The processor polls the device.

There are two other commonly used mechanisms for implementing I/O operations: interrupts and

direct memory access. In the case of interrupts, synchronization is achieved by having the I/O device

send a special signal over the bus whenever it is ready for a data transfer operation. Direct memory

access is a technique used for high-speed I/O devices. It involves having the device interface transfer

data directly to or from the memory, without continuous involvement by the processor.

Figure 5.4 A program that reads one line from the keyboard, stores it in memory buffer, and

echoes it back to the display

2.Interrupts: Interrupt is a hardware signal to the processor from I/O devices through one of the

control line called interrupt-request line. The routine executed in response to an interrupt request is

called the interrupt-service routine, Interrupts bear considerable resemblance to subroutine calls.

Assume that an interrupt request arrives during execution of instruction i in Figure 4.5. The processor

first completes execution of instruction i. Then, it loads the program counter with the address of the

first instruction of the interrupt-service routine. For the time being, let us assume that this address is

hardwired in the processor. After execution of the interrupt-service routine, the processor has to come

back to instruction i 1. Therefore, when an interrupt occurs, the current contents of the PC, which point

to instruction i 1, must be put in temporary storage in a known location. A Return from-interrupt

instruction at the end of the interrupt-service routine reloads the PC from that temporary storage

location, causing execution to resume at instruction i 1. In many processors, the return address is saved

on the processor stack. Alternatively, it may be saved in a special location, such as a register provided

for this purpose.

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.5 Transfer of control through the use of interrupts

3.DIRECT MEMORY ACCESS (DMA): The main idea of direct memory access (DMA) is to

enable peripheral devices to cut out the “middle man” role of the CPU in data transfer. It allows

peripheral devices to transfer data directly from and to memory without the intervention of the CPU.

Having peripheral devices access memory directly would allow the CPU to do other work, which

would lead to improved performance, especially in the cases of large transfers. The DMA controller is

a piece of hardware that controls one or more peripheral devices. It allows devices to transfer data to or

from the system’s memory without the help of the processor. In a typical DMA transfer, some event

notifies the DMA controller that data needs to be transferred to or from memory. Both the DMA and

CPU use memory bus and only one or the other can use the memory at the same time. The DMA

controller then sends a request to the CPU asking its permission to use the bus. The CPU returns an

acknowledgment to the DMA controller granting it bus access. The DMA can now take control of the

bus to independently conduct memory transfer. When the transfer is complete the DMA relinquishes

its control of the bus to the CPU. Processors that support DMA provide one or more input signals that

the bus requester can assert to gain control of the bus and one or more output signals that the CPU

asserts to indicate it has relinquished the bus. Figure 8.10 shows how the DMA controller shares the

CPU’s memory bus.

Direct memory access controllers require initialization by the CPU. Typical setup parameters include

the address of the source area, the address of the destination area, the length of the block, and whether

the DMA controller should generate a processor interrupt once the block transfer is complete. A DMA

PREPARED BY C.YAMINI (ASST PROF)

controller has an address register, a word count register, and a control register. The address register

contains an address that specifies the memory location of the data to be transferred. It is typically

possible to have the DMA controller automatically increment the address register after each word

transfer, so that the next transfer will be from the next memory location. The word count register holds

the number of words to be transferred. The word count is decremented by one after each word transfer.

The control register specifies the transfer mode.

Direct memory access data transfer can be performed in burst mode or singlecycle mode. In burst

mode, the DMA controller keeps control of the bus until all the data has been transferred to (from)

memory from (to) the peripheral device. This mode of transfer is needed for fast devices where data

transfer cannot be stopped until the entire transfer is done. In single-cycle mode (cycle stealing), the

DMA controller relinquishes the bus after each transfer of one data word. This minimizes the amount

of time that the DMA controller keeps the CPU from controlling the bus, but it requires that the bus

request/acknowledge sequence be performed for every single transfer. This overhead can result in a

degradation of the performance. The single-cycle mode is preferred if the system cannot tolerate more

than a few cycles of added interrupt latency or if the peripheral devices can buffer very large amounts

of data, causing the DMA controller to tie up the bus for an excessive amount of time.

The following steps summarize the DMA operations:

1. DMA controller initiates data transfer.

2. Data is moved (increasing the address in memory, and reducing the count of words to be

moved).

3. When word count reaches zero, the DMA informs the CPU of the termination by means of an

interrupt.

4. The CPU regains access to the memory bus.

A DMA controller may have multiple channels. Each channel has associated with it an address register

and a count register. To initiate a data transfer the device driver sets up the DMA channel’s address

and count registers together with the direction of the data transfer, read or write. While the transfer is

taking place, the CPU is free to do other things. When the transfer is complete, the CPU is interrupted.

Direct memory access channels cannot be shared between device drivers. A device driver must be able

to determine which DMA channel to use. Some devices have a fixed DMA channel, while others are

more flexible, where the device driver can simply pick a free DMA channel to use.

Linux tracks the usage of the DMA channels using a vector of dma_chan data structures (one per

DMA channel). The dma_chan data structure contains just two fields, a pointer to a string describing

the owner of the DMA channel and a flag indicating if the DMA channel is allocated or not.

or must inform the device that its request h been recognized so that it may remove its interrupt-request

signal. This may be accomplished by means of a special control signal on the bus called an interrupt-

acknowledge signal. The execution of an instruction in the interrupt - service routine that accesses a

status or data register in the device interface implicitly informs the device that its interrupt request has

been recognized.

PREPARED BY C.YAMINI (ASST PROF)

4.BUSES: A bus in computer terminology represents a physical connection used to carry a signal from

one point to another. The signal carried by a bus may represent address, data, control signal, or power.

Typically, a bus consists of a number of connections running together. Each connection is called a bus

line. A bus line is normally identified by a number. Related groups of bus lines are usually identified

by a name. For example, the group of bus lines 1 to 16 in a given computer system may be used to

carry the address of memory locations, and therefore are identified as address lines.

Synchronous Buses: In synchronous buses, the steps of data transfer take place at fixed clock cycles.

Everything is synchronized to bus clock and clock signals are made available to both master and slave.

The bus clock is a square wave signal. A cycle starts at one rising edge of the clock and ends at the

next rising edge, which is the beginning of the next cycle. A transfer may take multiple bus cycles

depending on the speed parameters of the bus and the two ends of the transfer.One scenario would be

that on the first clock cycle, the master puts an address on the address bus, puts data on the data bus,

and asserts the appropriate control lines. Slave recognizes its address on the address bus on the first

cycle and reads the new value from the bus in the second cycle. Synchronous buses are simple and

easily implemented. However, when connecting devices with varying speeds to a synchronous bus, the

slowest device will determine the speed of the bus. Also, the synchronous bus length could be limited

to avoid clock-skewing problems.

PREPARED BY C.YAMINI (ASST PROF)

A memory read transaction on the synchronous bus typically proceeds as illustrated in Fig. 5. During

the first clock cycle the CPU places the address of the location it wants to read, on the address lines of

the bus. Later during the same clock cycle, once the address lines have stabilized, the READ request is

asserted by the CPU. Many times, some of these control signals are active low and asserting the signal

means that they are pulled low. A few clock cycles are needed for the memory to perform accessing of

the requested location. In a simple non-pipelined bus, these appear as wait states and the data is placed

on the bus by the memory after the tow or three wait cycles. The CPU then releases the bus by

deasserting the READ control signal. The write transaction is similar except that the processor is the

data source and the WRITE signal is the one that is asserted. Different bus architectures synchronize

bus operations with respect to the rising edge or falling edge or level of the clock signal.

Asynchronous Buses: There are no fixed clock cycles in asynchronous buses. Handshaking is used

instead. Figure 8.11 shows the handshaking protocol. The master asserts the data-ready line

(point 1 in the figure) until it sees a data-accept signal. When the slave sees a dataready signal, it will

assert the data-accept line (point 2 in the figure). The rising of the data-accept line will trigger the

falling of the data-ready line and the removal of data from the bus. The falling of the data-ready line

(point 3 in the figure) will trigger the falling of the data-accept line (point 4 in the figure). This

PREPARED BY C.YAMINI (ASST PROF)

handshaking, which is called fully interlocked, is repeated until the data is completely transferred.

Asynchronous bus is appropriate for different speed devices.

An asynchronous bus has no system clock. Handshaking is done to properly conduct the transmission

of data between the sender and the receiver. The process is illustrated in Fig. 6. For example, in an

asynchronous read operation, the bus master puts the address and control signals on the bus and then

asserts a synchronization signal. The synchronization signal from the master prompts the slave to get

synchronized and once it has accessed the data, it asserts its own synchronization signal. The slave's

synchronization signal indicates to the processor that there is valid data on the bus, and it reads the

data. The master then deasserts its synchronization signal, which indicates to the slave that the master

has read the data. The slave then deasserts its synchronization signal. This method of synchronization

is referred to as a full handshake. Note that there is no clock and that starting and ending of the data

transfer are indicated by special synchronization signals. An asynchronous communication protocol

can be considered as a pair of Finite State machines (FSMs) that operate in such a way that one FSM

does not proceed until the other FSM has reached a certain state.

Synchronous buses are typically faster than asynchronous buses because there is no overhead to

establish a time reference for each transaction. Another reason that helps the synchronous bus to

operate fast is that the bus protocol is predetermined and very little logic is involved in implementing

the Finite State machine. However, synchronous buses are affected by clock skew and they cannot be

very long. But asynchronous buses work well even when they are long because clock skew problems

do not affect them. Thus asynchronous buses can handle longer physical distances and higher number

of devices. Processor-memory buses are typically synchronous because the devices connected to the

bus are fast, are small in number and are located in close proximity. I/O buses are typically

asynchronous because many peripherals need only slow data rates and are physically situated far away.

The device raises an interrupt request.

2. The processor interrupts the program currently being executed.

3. Interrupts are disabled by changing the control bits in the PS (except in the case of edgetriggered

interrupts).

4. The device is informed that its request has been recognized, and in response, it deactivates the

interrupt-request signal.

5. The action requested by the interrupt is performed by the interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted program is resumed.

HANDLING MULTIPLE DEVICES: Let us now consider the situation where a number of devices

capable of initiating interrupts are connected to the processor. Because these devices are operationally

independent, there is no definite order in which they will generate interrupts. For example, device X

may request an interrupt while an interrupt caused by device Y is being serviced, or several devices

may request interrupts at exactly the same time. This gives rise to a number of questions:

1. How can the processor recognize the device requesting an interrupt?

2. Given that different devices are likely to require different interrupt -service routines, how can the

processor obtain the starting address of the appropriate routine in each case?

3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?

4. How should two or more simultaneous interrupt requests be handled?

If two devices have activated the line at the same time, it must be possible to break the tie and elect

one of the two requests for service. When the interrupt-service routine for the selected device has been

completed, the second request can be serviced.

PREPARED BY C.YAMINI (ASST PROF)

5.Interface circuits: An Input/output (I/O) interface consists of the circuitry required to

connect an I/O device to a computer bus. On one side of the interface we have the bus signals for

address, data, and control. On the other side we have a data path with its associated controls to transfer

data between the interface and the I/O device. This side is called a port, and it can be classified as

either a parallel or a serial port. A parallel port transfers data in the form of a number of bits, typically

8 or 16, simultaneously to or from the device. A serial port transmits and receives data one bit at a

time. Communication with the bus is the same for both formats; the conversion from the parallel to the

serial format, and vice versa, takes place inside the interface circuit. I/O interface does the following:

1. Provides a storage buffer for at least one word of data (or one byte, in the case of byte-oriented

devices)

2. Contains status flags that can be accessed by the processor to determine whether the buffer is full

(for input) or empty (for output)

3. Contains address-decoding circuitry to determine when it is being addressed by the processor

4. Generates the appropriate timing signals required by the bus control scheme

5. Performs any format conversion that may be necessary to transfer data between the bus and the I/O

device, such as parallel-serial conversion in the case of a serial port

Parallel port: Figure 5.20 shows the hardware components needed for connecting a keyboard to a

processor. A typical keyboard consists of mechanical switches that are normally open. When a key is

pressed, its switch closes and establishes a path for an electrical signal. This signal is detected by an

encoder circuit that generates the ASCII code for the corresponding character. A difficulty with such

push-button switches is that the contacts bounce when a key is pressed. Although bouncing may last

only one or two milliseconds, this is long enough for the computer to observe a single pressing of a

key as several distinct electrical events; this single pressing could be erroneously interpreted as the key

being pressed and released rapidly several times. The effect of bouncing must be eliminated. We can

do this in two ways: A simple de-bouncing circuit can be included, or a software approach can be used.

When debouncing is implemented in software, the I/O routine that reads a character from the keyboard

waits long enough to ensure that bouncing has subsided. Figure 5.20 illustrates the hardware approach;

debouncing circuits are included as a part of the encoder block.

The output of the encoder consists of the bits that represent the encodedcharacter and one control

signal called Valid, which indicates that a key is being pressed. This information is sent to the interface

circuit, which contains a data register, DATAIN, and a status flag, SIN. When a key is pressed, the

valid signal changes from 0 to 1,, causing the ASCII code to be loaded into DATAIN and SIN to be set

to 1. The status flag SIN is cleared to 0 when the processor reads the contents of the DATAIN register.

The interface circuit is connected to an asynchronous bus on which transfers are controlled using the

handshake signals Master-ready and Slave-ready. The third control line, R/W distinguishes read and

write transfers.

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.21 shows a suitable circuit for an input interface. The output lines of the DATAIN

register are connected to the data lines of the bus by means of three-state drivers, which are

turned on when the processor issues a read instruction with the ad- dress that selects this

register. The SIN signal is generated by a status flag circuit. This signal is also sent to the bus

through a three-state driver. It is connected to bit DO, which means it will appear as bit 0 of the

status register. Other bits of this register do not contain valid information. An address decoder

is used to select the input interface when the high-order 31 bits of an address correspond to any

of the addresses assigned to this interface. Address bit AO determines whether the status or the

data registers is to be read when the Master-ready signal is active. The control handshake is

accomplished by activating the Slaveready signal when either Read-status or Read-data is equal

to 1.

Figure 5.22 Circuit for the status Rag block in Figure 5.21.

A possible implementation of the status flag circuit is shown in Figure 5.21. An edgetriggered D

flip-flop is set to 1 by a rising edge on the Valid signal line. this event changes the state of the

NOR latch such that SIN is set to 1. The state of this latch must not change while SIN is being read

by the processor. Hence, the circuit ensures that SIN can be set only while Masterready is equal to

PREPARED BY C.YAMINI (ASST PROF)

0. Both the flip- flop and the latch are reset to 0 when Read-data is set to 1 to read the DATAIN

register.

Let us now consider an output interface that can be used to connect an output device, such as a

printer, to a processor, as shown in Figure 5.23. The printer operates under control of the

handshake signals Valid and Idle in a manner similar to the handshake used on the bus with the

Master-ready and Slave-ready signals. When it is ready to accept a character, the printer asserts its

Idle signal. The interface circuit can then place a new character on the data lines and activate the

Valid signal. In response, the printer starts printing the new character and negates the Idle signal,

which in turn causes the interface to deactivate the Valid signal.

Serial port

A serial port is used to connect the processor to I/O devices that require transmission of data one bit at

a time. The key feature of an interface circuit for a serial port is that it is capable of communicating in

a bit-serial fashion on the device side and in a bit-parallel fashion on the bus side. The transformation

between the parallel and serial formats is achieved with shift registers that have parallel access

capability. A block diagram of a typical serial interface is shown in Figure 5.27. It includes the familiar

DATAIN and DATAOUT registers. The input shift register accepts bit-serial input from the I/O

device. When all 8 bits of data have been received, the contents of this shift register are loaded in

parallel into the DATAIN register. Similarly, output data in the DATAOUT register are loaded into the

output shift register, from which e bits are shifted out and sent to the I/O device.

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.27 A serial interface.

The part of the interface that deals with the bus is the same as in the parallel interface described earlier.

The status flags SIN and SOUT serve similar functions. The SIN flag is set to 1

 when new data are loaded in DATAIN; it is cleared to 0 when the processor reads the contents of

DATAIN. As soon as the data are transferred from the input shift register into the DATAIN

register, the shift register can start accepting the next 8-bit character from the I/O device. The

SOUT flag indicates whether the output buffer is available. It is cleared to 0 when the processor

writes new data into the DATAOUT register and set to 1 when data are transferred from

DATAOUT into the output shift register.

 The double buffering used in the input and output paths are important. A simpler interface could be

implemented by turning DATAIN and DATA OUT into shift registers and eliminating the shift

registers in Figure 5.27. However, this would impose awkward restrictions on the operation of the

I/O device; after receiving one character from the serial line, the device cannot start receiving the

next character until the processor reads the contents of DATAIN. Thus, a pause would be needed

between two characters to allow the processor to read the input data. With the double buffer, the

transfer of the second character can begin as soon as the first character is loaded from the shift

register into the DATAIN register. Thus, provided the processor reads the contents of DATAIN

before the serial transfer of the second character is completed, the interface can receive a

continuous stream of serial data. An analogous situation occurs in the output path of the interface.

PREPARED BY C.YAMINI (ASST PROF)

Because it requires fewer wires, serial transmission is convenient for connecting devices that are

physically far away from the computer. The speed of transmission, often given as a bit rate, depends

on the nature of the devices connected. To accommodate a range of devices, a serial interface must be

able to use a range of clock speeds. The circuit in Figure 5.27 allows separate clock signals to be used

for input and output operations for increased flexibility. Because serial interfaces play a vital role in

connecting I/O devices, several widely used standards have been developed. A standard circuit that

includes the features of our example in Figure 5.27 is known as a Universal Asynchronous Receiver

Transmitter (UART). It is intended for use with low-speed serial devices. Data transmission is

performed using the asynchronous start-stop format. To facilitate connection to communication links, a

popular standard known as RS-232-C was developed.

6.SCSI (Small Computer System Interface): Data transfers on the SCSI bus are always controlled by

the target controller. To send a command to a target, an initiator requests control of the bus and, after

winning arbitration, selects the controller it wants to communicate with and hands control of the bus

over to it. Then the controller starts a data transfer operation to receive a command from the initiator.

Assume that the processor wishes to read a block of data from a disk drive and that these data are

stored in two disk sectors that are not contiguous. The processor sends a command to the SCSI

controller, which causes the following sequence of events to take place:

1. The SCSI controller, acting as an initiator, contends for control of the bus.

2. When the 'initiator wins the arbitration process, it selects the target controller and hands over

control of the bus to it.

3. The target starts an output operation (from initiator to target); in response to this, the initiator

sends a command specifying the required read operation.

4. The target, realizing that it first needs to perform a disk seek operation, sends a message to the

initiator indicating that it will temporarily suspend the connection between them. Then it

releases the bus.

5. The target controller sends a command to the disk drive to move the read head to the first

sector involved in the requested read operation. Then, it reads the data stored in that sector and

stores them in a data buffer. When it is ready to begin transferring data to the initiator, the

target requests control of the bus. After it wins arbitration, it res elects the initiator controller,

thus restoring the suspended connection.

6. The target transfers the contents of the data buffer to the initiator and then suspends the

connection again. Data are transferred either 8 or 16 bits in parallel, depending on the width of

the bus.

7. The target controller sends a command to the disk drive to perform another seek operation.

Then, it transfers the contents of the second disk sector to the initiator, as before. At the end of

this transfer, the logical connection between the two controllers is terminated.

8. As the initiator controller receives the data, it stores them into the main memory using the

DMA approach.

9. The SCSI controller sends an interrupt to the processor to inform it that the requested operation

has been completed.

This scenario shows that the messages exchanged over the SCSI bus are at a higher level than those

exchanged over the processor bus. The SCSI bus standard defines a wide range of control messages

that can be ex- changed between the controllers to handle different types of I/O devices. Messages are

also defined to deal with various error or failure conditions that might arise during device operation or

data transfer.

7.USB (Universal Serial Bus).: Universal Serial Bus (USB) is an industry standard developed through

a collaborative effort of several computer and communications companies, including Compaq,

Hewlett-Packard, Intel, Lucent, Microsoft, Nortel Networks, and Philips. USB is a simple and low cost

PREPARED BY C.YAMINI (ASST PROF)

mechanism to connect the devices such as keyboards, mouse, cameras, speakers, printer and display

devices to the computer.

The USB supports two speeds of operation, called low-speed (1.5 megabits/s) and fullspeed (12

megabits/s). The most recent revision of the bus specification (USB 2.0) introduced a third speed of

operation, called high-speed (480 megabits/s). The USB is quickly gaining acceptance in the market

place, and with the addition of the high-speed capability it may well become the interconnection

method of choice for most computer devices. The USB has been designed to meet several key

objectives:

 Provide a simple, low-cost, and easy to use interconnection system that overcomes the difficulties

due to the limited number of I/O ports available on a computer

 Accommodate a wide range of data transfer characteristics for I/O devices, including telephone and

Internet connections

 Enhance user convenience through a "plug-and-play" mode of operation

Port limitation: Only a few ports are provided in a typical computer. To add new ports, a user must

open the computer box to gain access to the internal expansion bus and install a new interface card.

The user may also need to know how to configure the device and the software. An objective of the

USB is to make it possible to add many devices to a computer system at any time, without opening the

computer box.

Device Characteristics: The different kinds of devices may be connected to a computer cover a wide

range of functionality. The speed, volume, and timing constraints associated with data transfers to and

from such devices vary significantly. In the case of a keyboard, one byte of data is generated every

time a key is pressed, which may happen at any time. These data should be transferred to the computer

promptly. Since the event of pressing a key is not synchronized to any other event in -8 computer

system, the data generated by the keyboard are called asynchronous. Furthermore, the rate at which the

data are generated is quite low. It is limited by the speed of the human operator to about 100 bytes per

second, which is less than 1000 bits per second.

Let us consider a different source of data. Many computers have a microphone either externally

attached or built in. The sound picked up by the microphone produces an analog electrical signal,

which must be converted into a digital form before it can be handled by the computer. This is

accomplished by sampling the analog signal periodically. For each sample, an analog-to-digital (A/D)

converter generates an n-bit number representing the magnitude of the sample. The number of bits, n,

is selected based on, the desired precision with which to represent each sample. Later, when these data

are sent to a speaker, a digital-to-analog (D/A) converter is used to restore the original analog signal

from the digital format. The sampling process yields a continuous stream of digitized samples that

arrive at regular intervals, synchronized with the sampling clock. Such a data stream is called

isochronous, meaning that successive events are separated by equal periods of time.

Plug-and-play: The plug-and-play feature means that a new device, such as an additional speaker, can

be connected at any time while the system is operating. The system should detect the existence of this

new device automatically, identify the appropriate device-driver soft- ware and any other facilities

needed to service that device, and establish the appropriate addresses and logical connections to enable

them to communicate. The plug-and-play requirement has many implications at all levels in the

system, from the hardware to the operating system and the applications software. One of the primary

objectives of the design of the USB has been to provide a plug-and-play capability.

PREPARED BY C.YAMINI (ASST PROF)

8.USB Architecture: A serial transmission format has been chosen for the USB because a serial

bus satisfies the low-cost and flexibility requirements. Clock and data information are encoded

together and transmitted as a single signal. Hence, there are no limitations on clock frequency or

distance arising from data skew. Therefore, it is possible to provide a high data transfer bandwidth by

using a high clock frequency. As pointed out earlier, the USB offers three bit rates, ranging from 1.5 to

480 megabits/s, to suit the needs of different I/O devices.

To accommodate a large number of devices that can be added or removed at any time, the USB has the

tree structure shown in Figure 5.33. Each node of the tree has a device called a hub, which acts as an

intermediate control point between the host and the I/O devices. At the root of the tree, a root hub

connects the entire tree to the host computer. The leaves of the tree are the I/O devices being served

(for example, keyboard, speaker, or digital TV), which are called functions in USB terminology.

Figure 5.33 Universal Serial Bus tree structure.

The tree structure enables many devices to be connected while using only simple point -topoint serial

links. Each hub has a number of ports where devices may be connected, including other hubs. In

normal operation, a hub copies a message that it receives from its upstream connection to all its

downstream ports. As a result, a message sent by the host computer is broadcast to ill VO devices, but

only the addressed device will respond to that message. A message from an I/O device is sent only

upstream towards the root of the tree and is not seen by other devices. Hence, the USB enables the host

to communicate with the I/O devices, but it does not enable these devices to communicate with each

other.

The USB operates strictly on the basis of polling. A device may send a message only in response to a

poll message from the host. Hence, upstream messages do not encounter conflicts or interfere with

each other, as no two devices can send messages at the same time. This restriction allows hubs to be

simple, Low-cost devices.

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.34 USB Split bus operations.

The mode of operation described above is observed for all devices operating at either low speed or full

speed. However, one exception has been necessitated by the introduction of highpeed operation in

USB version 2.0. Consider the situation in Figure 5.34. Hub A is connected to the root hub by a high-

speed link. This hub serves one high-speed device, C, and one low-speed device, D. Normally, a

message to device D would be sent at low speed from the root hub. At 1.5 megabits/s, even a short

message takes several tens of microseconds. For the duration of this message, no other data transfers

can take place, thus reducing the effectiveness of the high-speed links and introducing unacceptable

delays for high-speed devices. To mitigate this problem, the USB protocol requires that a message

transmitted on a high-speed link is always transmitted at high speed, even when the ultimate receiver is

a low-speed device. Hence, a message intended for device D is sent at high speed from the root hub to

hub A, then forwarded at low speed to device D. The latter transfer will take a long time, during which

high-speed traffic to other nodes is allowed to continue. For example, the root hub may exchange

several messages with device C while the low-speed message is being sent from hub A to device D.

During this period, the bus is said to be split between high-speed and low-speed traffic. The message

to device D is preceded and followed by special commands to hub A to start and end the split-traffic

mode of operation, respectively.

The USB standard specifies the hardware details of USB interconnections as well as the organization

and requirements of the host software. The purpose of the USB software is to provide bidirectional

communication links between application software and I/O devices. These links are called pipes. Any

data entering at one end of a pipe is delivered at the other end. Issues such as addressing, timing, or

error detection and recovery are handled by the USB protocols. The software that transfers data to or

from a given IJO device is called the device driver for that device. The device drivers depend on the

characteristics of the devices they support. Hence, a more precise description of the USB pipe is that it

connects an VO device to its device driver. It is established when a device is connected and assigned a

unique address by the USB software. Once established, data may flow through the pipe at any time.

Addressing: I/O devices are normally identified by assigning them a unique memory address. In fact,

a device usually has several addressable locations to enable the software to send and receive control

PREPARED BY C.YAMINI (ASST PROF)

and status information and to transfer data. When a USB is connected to a host computer, its root hub

is attached to the processor bus, where it appears as a single device. The host software communicates

with individual devices attached to the USB by sending packets of information, which the root hub

forwards to the appropriate device in the USB tree.

Each device on the USB, whether it is a hub or an IJO device, is assigned a 7 -bit address. This address

is local to the USB tree and is not related in any way to the addresses used on the processor bus. A hub

may have any number of devices or other hubs connected to it, and addresses are assigned arbitrarily.

When a device is first connected to a hub, or when it is powered on, it has the address 0. The hardware

of the hub to which this device is connected is capable of detecting that the device has been connected,

and it records this fact as part of its own status information. Periodically, the host polls each hub to

collect status information and learn about new devices that may have been added or disconnected.

9.USB Protocol: All information transferred over the USB is organized in packets, where a packet

consists of one or more bytes of information. There are many types of packets that perform a variety of

control functions. The information transferred on the USB can be divided into two broad categories:

control and data. Control packets perform such tasks as addressing a device to initiate data transfer,

acknowledging that data have been received correctly, or indicating an error. Data packets carry

information that is delivered to a device. For example, put and output data are transferred inside data

packets.

A packet consists of one or more fields containing different kinds of information. The first field of any

packet is called the packet identifier, PID, which identifies the type of that packet. There are four bits

of information in this field, but they are transmitted twice. The first time they are sent with their true

values, and the second time with each bit complemented, as shown in Figure 5.35(a). This enables the

receiving device to verify that the PID byte has been received correctly.

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.35. USB packet format.

The four PID bits identify one of 16 different packet types. Some control packets, such as ACK

(Acknowledge), consist only of the PID byte. Control packets used for controlling data transfer

operations are called token packets. They have the format shown in Figure 5.35(b). A token packet

starts with the PID field, using one of two PID values to distinguish between an IN packet and an OUT

packet, which control input and output transfers, respectively. The PID field is followed by the 7 -bit

address of a device and the 4-bit endpoint number within that device. The packet ends with 5 bits for

error checking, using a method called cyclic redundancy check (CRC). The CRC bits are computed

based on the contents of the address and endpoint fields. By performing an inverse computation, the

receiving device can determine whether the packet has been received correctly.

Data packets, which carry input and output data, have the format shown in Figure 4.45c. The packet

identifier field is followed by up to 8192 bits of data, then 16 error-checking bits. Three different PID

patterns are used to identify data packets, so that data packets may be numbered 0, 1, or 2. Note that

data packets do not carry a device address or an endpoint number. This information is included in the

IN or OUT token packet that initiates the transfer. Consider an output device connected to a USB hub,

which in turn is connected to a host computer. An example of an output operation is shown in Figure

5.36. The host computer sends a token packet of type OUT to the hub, followed by a data packet

containing the output data. The PID field of the data packet identifies it as data packet number o. The

hub verifies that the transmission has been error free by checking the error control bits, and then sends

an acknowledgment packet (ACK) back to the host. The hub forwards the token and data packets

downstream. All I/O devices receive this sequence of packets, but only the device that recognizes its

address in the token packet accepts the data in the packet that follows. After verifying that

transmission has been error free, it sends an ACK packet to the hub.

PREPARED BY C.YAMINI (ASST PROF)

Successive data packets on a full-speed or low-speed pipe carry the numbers 0 and 1, alternately. This

simplifies recovery from transmission errors. If a token, data, or acknowledgment packet is lost as a

result of a transmission error, the sender resends the entire sequence. By checking the data packet

number in the PID field, the receiver can detect and discard duplicate packets. High-speed data packets

are sequentially numbered 0, 1, 2, 0, and so on. Input operations follow a similar procedure. The host

sends a token packet of type IN containing the device address. In effect, this packet is a poll asking the

device to send any input data it may have. The device responds by sending a data packet followed by

an ACK. If it has no data ready, it responds by sending a negative acknowledgment (NAK) instead.

Electrical characteristics: The cables used for USB connections consist of four wires. Two are used

to carry power, 5 V and Ground. Thus, a hub or an I/O device may be powered directly from the bus,

or it may have its own external power connection. The other two wires are used to carry data. Different

signaling schemes are used for different speeds of transmission. At low speed, 1s and 0s are

transmitted by sending a high voltage state (5 V) on one or the other of the two signal wires. For high-

speed links, differential transmission is used.

10.I/O device

PREPARED BY C.YAMINI (ASST PROF)

Keyboard: The computer keyboard is used to enter text information into the computer, as when you

type the contents of a report. The keyboard can also be used to type commands directing the computer

to perform certain actions. In addition to the keys of the main keyboard (used for typing text),

keyboards usually also have a numeric keypad (for entering numerical data efficiently), a bank of

editing keys (used in text editing operations), and a row of function keys along the top (to easily

invoke certain program functions). Laptop computers, which don’t have room for large keyboards,

often include a “fn” key so that other keys can perform double duty (such as having a numeric keypad

function embedded within the main keyboard keys).

Mouse: The mouse pointing device sits on your work surface and is moved with your hand. In older

mice, a ball in the bottom of the mouse rolls on the surface as you move the mouse, and internal rollers

sense the ball movement and transmit the information to the computer via the cord of the mouse. The

newer optical mouse does not use a rolling ball, but instead uses a light and a small optical sensor to

detect the motion of the mouse by tracking a tiny image of the desk surface. Optical mice avoid the

problem of a dirty mouse ball, which causes regular mice to roll unsmoothly if the mouse ball and

internal rollers are not cleaned frequently.

Scanners: A scanner is a device that images a printed page or graphic by digitizing it, producing an

image made of tiny pixels of different brightness and color values which are represented numerically

and sent to the computer. Scanners scan graphics, but they can also scan pages of text which are then

run through OCR (Optical Character Recognition) software that identifies the individual letter shapes

and creates a text file of the page's contents.

Monitors: CRT (Cathode Ray Tube), LCD (Liquid Crystal Display)

Printers: Laser Printer, Inkjet Printer, Dot matrix printer

11.Processors

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.37 8085 processor block diagram

PREPARED BY C.YAMINI (ASST PROF)

Figure 5.38 Registers of Arm Processor

Unit-4

1.Basic concepts of memory system: Computer should have a large memory to facilitate execution of

programs that are large and deal with huge amounts of data. The memory should be fast, large, and

inexpensive. Unfortunately, it is impossible to meet all three of these requirements simultaneously.

Increased speed and size are achieved at increased cost. To solve this problem, much work has gone

into developing clever structures that improve the apparent speed and size of the memory, yet keep the

cost reasonable.

The maximum size of the memory that can be used in any computer is determined by the addressing

scheme. For example, a 16-bit computer that generates 16-bit addresses is capable of addressing up to

216 = 64K (65536) memory locations. Similarly, machines whose instructions generate 32-bit

addresses can utilize a memory that contains up to 232 = 4G (giga) memory locations, whereas

machines with 4O-bit addresses can access up to 240 = 1 T (tera) locations. The number of locations

represents the size of the address space of the computer.

 From the system standpoint, we can view the memory unit as a black box. Data transfer

between the memory and the processor takes place through the use of two processor registers, usually

called MAR (memory address register) and MDR (memory data register), If MAR is k bits long and

MDR is n bits long, then the memory unit may contain up to 2 k addressable locations. During a

memory cycle, n bits of data are transferred between the memory and the processor. This transfer takes

place over the processor bus, which has k address lines and n data lines. The bus also includes the

con1rollines Read / Write (R / W) and Memory Function Completed (MFC) for coordinating data

transfers. Other control lines may be added to indicate the number of bytes to be transferred. The

connection between the processor and the memory is shown schematically in Figure 4.1.

PREPARED BY C.YAMINI (ASST PROF)

Figure 4.1 Connection of the memory to the processor

 The processor reads data from the memory by loading the address of the required memory location

into the MAR register and setting the R / W line to 1. The memory responds by placing the data

from the addressed location onto the data lines, and confirms this action by asserting the MFC

signal. Upon receipt of the MFC signal, the processor loads the data on the data lines into the MDR

register. The processor writes data into a memory location by loading the address of this location

into MAR and loading the data into MDR. It indicates that a write operation is involved by setting

the R/ W line to 0. If read or write operations involve consecutive address locations in the main

memory, then a "block transfer" operation can be performed in which the only address sent to the

memory is the one that identifies the first location.

 The time between the Read and the MFC signals is referred to as the memory access time. The

memory cycle time is the minimum time delay required between the initiations of two successive

memory operations, If any location can be accessed for a Read or Write operation some fixed

amount of time that is independent of the location's address in a memory unit is called random-

access memory (RAM). One way to reduce the memory access time is to use a cache memory. This

is a small, fast memory that is inserted between the larger, slower main memory and the processor.

It holds the currently active segments of a program and their data.

 Virtual memory is used to increase the apparent size of the physical memory. Data are addressed in

a virtual address space that can be as large as the addressing capability of the processor. But at any

given time, only the active portion of this space is mapped onto locations in the physical memory.

The remaining virtual addresses are mapped onto the bulk: storage devices used, which are usually

magnetic disks. The virtual address space is mapped onto the physical memory where data are

actually stored. The mapping function is implemented by a special memory control circuit, often

called the memory management unit.

2. Semiconductor RAM Memories: Semiconductor memories are available in a wide range of

speeds. Their cycle times range from l00ns to less than 10 ns.

INTERNAL ORGANIZATION OF MEMORY CHIPS: Memory cells are usually organized in the

form of an array, in which each cell is capable of storing one bit of information. A possible

organization is illustrated in Figure 4.2.

PREPARED BY C.YAMINI (ASST PROF)

Figure 4.2 Organization of bit cell in a memory chip
Each row of cells constitutes a memory word, and all cells of a row are connected to a common line

referred to as the word line, which is driven by the address decoder on the chip. The cells in each

column are connected to a Sense/Write circuit by two bit lines. The Sense/Write circuits are connected

to the data input/output lines of the chip. During a Read operation, these circuits sense, or read, the

information stored in the cells selected by a word line and transmit this information to the output data

lines. During a Write operation, the Sense/Write circuits receive input information and store it in the

cells of the selected word.

Figure 5.2 is an example of a very small memory chip consisting of 16 words of 8 bits each. This is

referred to as a 16 x 8 organization. The data input and the data output of each Sense/Write circuit are

connected to a single bidirectional data line that, can be connected to the data bus of a computer. Two

control lines, R/W and CS, are provided in addition to address and data lines. The R/W (Read/Write)

input specifies the required operation, and the CS (Chip Select) input selects a given chip in a

multichip memory system.

PREPARED BY C.YAMINI (ASST PROF)

 The memory circuit in Figure 4.2 stores 128 bits and requires 14 external connections for address,

data, and control lines. Of course, it also needs two lines for power supply and ground connections.

Consider now a slightly larger memory circuit, one that has l K (1024) memory cells.

 This circuit can be organized as a 128 x 8 memory, requiring a total of 19 external connections.

Alternatively, the same number of cells can be organized into a l K x 1 format. In this case, a 100bit

address is needed, but there is only one data line, resulting in 15 external connections. Figure 4.3

shows such an organization.

 The required 100bit address is divided into two groups of 5 bits each to form the row and column

addresses for the cell array. A row address selects a row of 32 cells, all of which are accessed in

parallel. However, according to the column address, only one of these cells is connected to the

external data line by the output multiplexer and input demultiplexer. For an example, a 4M-bit chip

may have a 512K x 8 organization, in which case 19 address and 8 data input/output pins are

needed.

3.STATIC MEMORIES: Static memories are the Memories that consist of circuits capable of

retaining their state as long as power is applied are known as static memories. Figure 4.4 illustrates

how a static RAM (SRAM) cell may be implemented. Two inverters are cross-connected to form a

latch. The latch is connected to two bit lines by transistors Tl and T2. These transistors act as switches

that can be opened or closed under control of the word line. When the word line is at ground level, the

transistors are turned off and the latch retains its state. For example, let us assume that the cell is in

state 1 if the logic value at point X is 1 and at point Y is 0. This state is maintained as long as the

signal on the word line is at ground level.

Read operation: In order to read the state of the SRAM cell, the word line is activated to close

switches Tl and T2. If the cell is in state 1, the signal on bit line b is high and the signal on bit line b' is

low. The opposite is true if the cell is in state 0. Thus, b and b' are complements of each other.

Sense/Write circuits at the end of the bit lines monitor the state of b and b' and set the output

accordingly.

PREPARED BY C.YAMINI (ASST PROF)

Write operation: The state of the cell is set by placing the appropriate value on bit line b and its

complement on b', and then activating the word line. This forces the cell into the corresponding state.

The required signals on the bit lines are generated by the Sense/Write circuit. if Tl and T2 are turned

on (closed), it lines b and b ' will have high and low signals, respectively.

<--Figure 4.4 A static RAM cell

Figure 4.5 An example of a CMOS memory cell-->

 The power supply voltage, Vsupply, is 5 V in older CMOS SRAMs or 3.3 V in new lowvoltage

versions. Note that "continuous power is needed for the cell to retain its state. If power is interrupted,

the cell's contents will be lost. When power is restored, the latch will settle into a stable state, but it

will not necessarily be the same state the cell was in before the interruption. Hence, SRAMs are said to

be volatile memories because their contents are lost when power is interrupted.

A major advantage of CMOS SRAMs is their very low power consumption because current flows in

the cell only when the cell is being accessed. Otherwise, Tl, T2 and one transistor in each inverter are

PREPARED BY C.YAMINI (ASST PROF)

turned off, ensuring that there is no active path between Vsupply and ground. Static RAMs can be

accessed very quickly. Access times of just a few nanoseconds are found in commercially available

chips. SRAMs are used in applications where speed is of critical concern.

4.Asynchronous DRAMs: Static RAMs are fast, but they come at a high cost because their cells

require several transistors. Less expensive RAMs can be implemented if simpler cells are used.

However, such cells do not retain their state indefinitely; hence, they are called dynamic RAMs

(DRAMs). Information is stored in a dynamic memory cell in the form of a charge on a capacitor, and

this charge can be maintained for only tens of milliseconds. Since the cell is required to store

information for a much longer time, its contents must be periodically refreshed by restoring the

capacitor charge to its full value. An example of a dynamic memory cell that consists of a capacitor, C,

and a transistor, T, is shown in Figure 4.6. In order to store information in this cell, transistor T is

turned on and an appropriate voltage is applied to the bit line. This causes a known amount of charge

to be stored in the capacitor.

 A 16-megabit DRAM chip, configured as 2M x 8, is shown in Figure 4.7. The cells are organized in

the form of a 4 K x 4 K array. The 4096 cells in each row are divided into 512 groups of 8, so that a

row can store 512 bytes of data. Therefore, 12 address bits are needed to select a row. Another 9 bits

are needed to specify a group of 8 bits in the selected row. Thus, a 21-bit address is needed to access a

byte in this memory. The high-order 12 bits and the low-order 9 bits of the address constitute the row

and column addresses of a byte, respectively. To reduce the number of pins needed for external

connections, the row and column addresses are multiplexed on 12 pins. During a Read or a Write

PREPARED BY C.YAMINI (ASST PROF)

operation, the row address is applied first. It is loaded into the row address latch in response to a signal

pulse on the Row Address Strobe (RAS) input of the chip.

Then a Read operation is initiated, in which all cells on the selected row are read and refreshed.

Shortly after the row address is loaded, the column address is applied to the address pins and loaded

into the column address latch under control of the Column Address Strobe (CAS) signal. The

information in this latch is decoded and the appropriate group of 8 Sense/Write circuits are selected. If

the R/W control signal indicates a Read operation, the output values of the selected circuits are

transferred to the data lines, D7-0. For a Write operation, the information on the D7-0 lines is

transferred to the selected circuits. This information is then used to overwrite the contents of the

selected cells in the corresponding 8 columns. We should note that in commercial DRAM chips, the

RAS and CAS control signals are active low so that they cause the latching of addresses when they

change from high to low. To indicate this fact, these signals are shown on diagrams as RAS and CAS .

Applying a row address causes all cells on the corresponding row to be read and refreshed during both

Read and Write operations. To ensure that the contents of a DRAM are maintained, each row of cells

must be accessed periodically. A refresh circuit usually performs this function automatically. Many

dynamic memory chips incorporate a refresh facility within the chips themselves. In this case, the

dynamic nature of these memory chips is almost invisible to the user. In the DRAM described in this

section, the timing of the memory device is controlled asynchronously. A specialized memory

controller circuit provides the necessary control signals, RAS and CAS, that govern the timing. The

processor must take into account the delay in the response of the memory. Such memories are referred

to as asynchronous DRAMs.

Because of their high density and low cost, DRAMs are widely used in the memory units of

computers. Available chips range in size from 1M to 256M bits, and even larger chips are being

developed. To reduce the number of memory chips needed in a given computer, a DRAM chip is

organized to read or write a number of bits in parallel, as indicated in Figure 4.7. To provide flexibility

in designing memory systems, these chips are manufactured in different organizations. For example, a

64-Mbit chip may be organized as 16M x 4, 8M x 8, or 4M x 16.

5.Synchronous DRAMs: DRAMs whose operation is directly synchronized with a clock signal are

known as synchronous DRAMs (SDRAMs). Figure 4.8 indicates the structure of an SDRAM. The cell

array is the same as in asynchronous DRAMs. The address and data connections are buffered by

means of registers. We should particularly note that the output of each sense amplifier is connected to

a latch. A Read operation causes the contents of all cells in the selected row to be loaded into these

latches. But, if an access is made for refreshing purposes only, it will not change the contents of these

latches; it will merely refresh the contents of the cells. Data held in the hitches that correspond to the

selected column(s) are transferred into the data output register, thus becoming available on the data

output pins. SDRAMs have several different modes of operation, which can be selected by writing

control information into a mode register. In SDRAMs, it is not necessary to provide externally

generated pulses on the CAS line to select successive columns.

Figure 4.9 shows a timing diagram for a typical burst read of length 4. First, the row address is latched

under control of the RAS signal. The memory typically takes 2 or 3 clock cycles (we use 2 in the

figure) to activate the selected row. Then, the column address is latched under control of the CAS

signal. After a delay of one clock cycle, the first set of data bits is placed on the data lines. The

SDRAM automatically increments the column address to access the next three sets of bits in the

selected row, which are placed on the data lines in the next 3 clock cycles.

SDRAMs have built-in refresh circuitry. A part of this circuitry is a refresh counter, which provides

the addresses of the rows that are selected for refreshing. In a typical SDRAM, each row must be

PREPARED BY C.YAMINI (ASST PROF)

refreshed at least every 64 ms. Commercial SDRAMs can be used with clock speeds above 100 MHz.

These chips are designed to meet the requirements of commercially available processors that are used

in large volume. For example, Intel has defined PCl00 and PC133 bus specifications in which the

system bus (to which the main memory is connected) is controlled by a 100 or 133 MHz clock,

respectively. Therefore, major manufacturers of memory chips produce 100 and 133 MHz SDRAM

chips. Transfers between the memory and the processor involve single words of data or small blocks of

words. Large blocks, constituting a page of data, are transferred between the memory and the disks.

The speed and efficiency of these transfers have a large impact on the performance of a computer

system.

<------Figure 4.8 Synchronous DRAM

M

Figure 4.9 Burst read of length 4 in SDRAM------->

PREPARED BY C.YAMINI (ASST PROF)

A good indication of the performance is given by two parameters: latency and bandwidth. The term

memory latency is used to refer to the amount of time it takes to transfer a word of data to or from the

memory. In the case of reading or writing a single word of data, the latency provides a complete

indication of memory performance. But, in the case of burst operations that transfer a block of data, the

time needed to complete the operation depends also on the rate at which successive words can be

transferred and on the size of the block. In block transfers, the term latency is used to denote the time it

takes to transfer the first word of data.

When transferring blocks of data, it is of interest to know how much time is needed to transfer an

entire block. Since blocks can be variable in size, it is useful to define a performance measure in terms

of the number of bits or bytes that can be transferred in one second. This measure is often referred to

as the memory bandwidth. The bandwidth of a memory unit (consisting of one or more memory chips)

depends on the speed of access to the stored data and on the number of bits that can be accessed in

parallel.

6.STRUCTURE OF LARGER MEMORIES: Many memory chips are connected to form a much

larger memory.

Static Memory System: Consider a memory consisting of 2M (2,097,152) words of 32 bits each.

Figure 4.10 shows how we can implement this memory using 512K x 8 static memory chips. Each

column in the figure consists of four chips, which implement one byte position. Four of these sets

provide the required 2M x 32 memory. Each chip has a control input called Chip Select. When this

input is set to 1, it enables the chip to accept data from or to place data on its data lines. The data

output for each chip is of the three-state type. Only the selected chip places data on the data output

line, while all other outputs are in the high-impedance state. Twenty one address bits are needed to

select a 32-bit word in this memory. The high-order 2 bits of the address are decoded to determine

which of the four Chip Select control signals should be activated and the remaining 19 address bits are

used to access specific byte locations inside each chip of the selected row. The R/W inputs of all chips

are tied together to provide a common Rea d/Write control (not shown in the figure).

PREPARED BY C.YAMINI (ASST PROF)

Dynamic Memory System: The organization of large dynamic memory systems is essentially the

same as the memory shown in Figure 4.10. However, physical implementation is often done more

conveniently in the form of memory modules. Modem computers use very large memories; even a

small personal computer is likely to have at least 32M bytes of memory. Typical workstations have at

least 128M bytes of memory. A large memory leads to better performance because more of the

programs and data used in processing can be held in the memory, thus reducing the frequency of

accessing the information in secondary storage. However, if a large memory is built by placing DRAM

chips directly on the main system printed-circuit board that contains the processor, often referred to as

a motherboard, it will occupy an unacceptably large amount of space on the board. Also, it is awkward

to provide for future expansion of the memory, because space must be allocated and wiring provided

for the maximum expected size. These packaging considerations have led to the development of larger

memory units known as SIMMs (Single In-line Memory Modules) and DIMMs (Dual In-line Memory

Modules). Such a module is an assembly of several Memory chips on a separate small board that plugs

vertically into a single socket on the motherboard. SIMMs and DIMMs of different sizes are designed

to use the same size socket.

7.MEMORY SYSTEM CONSIDERATION: There are several factors that determine the choice of a

RAM chip for a given application. These factors are the cost, speed, power dissipation, and size of the

chip. Static RAMs are generally used only when very fast operation is the primary requirement. Their

cost and size are adversely affected by the complexity of the circuit that realizes the basic cell. They

are used mostly in cache memories. Dynamic RAMs are the predominant choice for implementing

computer main memories. The high densities achievable in these chips make large memories

economically feasible.

PREPARED BY C.YAMINI (ASST PROF)

Memory' Controller: To reduce the number of pins, the dynamic memory chips use multiplexed

address inputs. The address is divided into two parts. The high-order address bits, which select a row

in the cell array, are provided first and latched into the memory chip under control of the RAS signal.

Then, the low-order address bits, which select a column, are provided on the same address pins and

latched using the CAS signal.

A typical processor issues all bits of an address at the same time. The required multiplexing of address

bits is usually performed by a memory controller circuit, which is interposed between the processor

and the dynamic memory as shown in Figure 4.11. The controller accepts a complete address and the

R/W signal from the processor, under control of a Request signal which indicates that a memory

access operation is needed. The controller then forwards the row and column portions of the address to

the memory and generates the RAS and CAS signals. Thus, the controller provides the RAS-CAS

timing, in addition to its address multiplexing function. It also sends the R/W and CS signals to the

memory. The CS signal is usually active low, hence it is shown as CS in Figure 4.11. Data lines are

connected directly between the processor and the memory. Note that the clock signal is needed in

SDRAM chips.

When used with DRAM chips, which do not have self-refreshing capability, the memory controller has

to provide all the information needed to control the refreshing process. It contains a refresh counter

that provides successive row addresses. Its function is to cause the refreshing of all rows to be done

within the period specified for a particular device.

Refresh overhead: All dynamic memories have to be refreshed. In older DRAMs, a typical period for

refreshing all rows was 16ms. In typical SDRAMs, a typical period is 64 ms.

8.Rambus Memory: A very wide bus is expensive and requires a lot of space on a motherboard. An

alternative approach is to implement a narrow bus that is much faster. This approach was used by

Rambus Inc. to develop a proprietary design known as Rambus. The key feature of Rambus

technology is a fast signaling method used to transfer information between chips. Instead of using

signals that have voltage levels of either 0 or Vsupply to represent the logic values, the signals consist

of much smaller voltage swings around a reference voltage, Vref. The reference voltage is about 2 V,

and the two logic values are represented by 0.3 V swings above and below Vref. This type of signaling

is generally known as differential signaling. Small voltage swings make it possible to have short

transition times, which allows for a high speed of transmission.

Rambus requires specially designed memory chips. These chips use cell arrays based on the standard

DRAM technology. Multiple banks of cell arrays are used to access more than one word at a time.

PREPARED BY C.YAMINI (ASST PROF)

Circuitry needed to interface to the Rambus channel is included on the chip. Such chips are known as

Rambus DRAMs (RDRAMs).

The original specification of Rambus provided for a channel consisting of 9 data lines and a number of

control and power supply lines. Eight of the data lines are intended for transferring a byte of data. The

ninth data line can be used for purposes such as parity checking. Subsequent specifications allow for

additional channels. A two-channel Rambus, also known as Direct RDRAM, has 18 data lines

intended to transfer two bytes of data at a time. There are no separate address lines.

9.Read Only Memories (ROM): RAM memories are volatile memories, which mean that they lose

the stored information if power is turned off. There are many applications that need memory devices

which retain the stored retained even if power is turned off. A practical solution is to provide a small

amount of nonvolatile memory that holds the instructions whose execution results in loading the boot

program from the disk. The contents of such memory can be read as if they were SRAM or DRAM

memories. But, a special writing process is needed to place the information into this memory. Since its

normal operation involves only reading of stored data, a memory of this type is called read-only

memory (ROM).

ROM: Figure 4.12 shows a possible configuration for a ROM cell. A logic value 0 is stored in the cell

if the transistor is connected to ground at point P; otherwise, a 1 is stored. The bit line is connected

through a resistor to the power supply. To read the state of the cell, the word line is activated. Thus, the

transistor switch is closed and the voltage on the bit line drops to near zero if there is a connection

between the transistor and ground. If there is no connection to ground, the bit line remains at the high

voltage, indicating a 1. A sense circuit at the end of the bit line generates the proper output value. Data

are written into a ROM when it is manufactured.

PROM: Some ROM designs allow the data to be loaded by the user, thus providing a programmable

ROM (PROM). Programmability is achieved by inserting a fuse at point P in Figure 4.12. Before it is

programmed, the memory contains all 0s. The user can insert 1s at the required locations by burning

out the fuses at these locations using high-current pulses. Of course, this process is irreversible.

PROMs provide flexibility and convenience not available with ROMs. The latter are economically

attractive for storing fixed programs and data when high volumes of ROMs are produced. However,

the cost of preparing the masks needed for storing a particular information pattern in ROMs makes

them very expensive when only a small number are required. In this case, PROMs provide a faster and

considerably less expensive approach because they can be programmed directly by the user.

EPROM: Another type of ROM chip allows the stored data to be erased and new data to be loaded.

Such an erasable, reprogrammable ROM is usually called an EPROM. It provides considerable

PREPARED BY C.YAMINI (ASST PROF)

flexibility during the development phase of digital systems. Since EPROMs are capable of retaining

stored information for a long time, they can be used in place of ROMs while software is being

developed. In this way, memory changes and updates can be easily made. An EPROM cell has a

structure similar to the ROM cell in Figure 4.12. In an EPROM cell, however, the connection to

ground is always made at point P and a special transistor is used, which has the ability to function

either as a normal transistor or as a disabled transistor that is always turned off. This transistor can be

programmed to behave as a permanently open switch, by injecting charge into it that becomes trapped

inside. Thus, an EPROM cell can be used to construct a memory in the same way as the previously

discussed ROM cell.

10.FLASH MEMORIES: An approach similar to EEPROM technology has more recently given rise

to flash memory devices. A flash cell is based on a single transistor controlled by trapped charge, just

like an EEPROM cell. While similar in some respects, there are also substantial differences between

flash and EEPROM devices. In EEPROM it is possible to read and write the contents of a single cell.

In a flash device it is possible to read the contents of a single cell, but it is only possible to write an

entire block of cells. Prior to writing, the previous contents of the block are erased. Flash devices have

greater density, which leads to higher capacity and a lower cost per bit. They require a single power

supply voltage, and consume less power in their operation. The low power consumption of flash

memory makes it attractive for use in portable equipment that is battery driven. 1Ypical applications

include hand-held computers, cell phones, digital cameras, and MP3 music players.

Single flash chips do not provide sufficient storage capacity for the applications mentioned above.

Larger memory modules consisting of a number of chips are needed. There are two popular choices for

the implementation of such modules: flash cards and flash drives.

Flash Cards

One way of constructing a larger module is to mount flash chips on a small card. Such flash cards have

a standard interface that makes them usable in a variety of products. A card is simply plugged into a

conveniently accessible slot. Flash cards come in a variety of memory sizes. Typical sizes are 8, 32, 64

MB and so on.

Flash drive

Larger flash memory modules have been developed to replace, hard disk drives. These flash drives are

designed to fully emulate the bard disks, to the point that they can be fitted into standard disk drive

bays. The fact that flash drives are solid state electronic devices that have no movable parts provides

some important advantages. They have shorter seek and access times, which results in faster response.

They have lower power consumption, which makes them attractive for battery driven applications, and

they are also insensitive to vibration. Another type of ROM chip allows the stored data to be erased

and new data to be loaded. The disadvantages of flash drives are less storage capacity, higher cost per

bit and it will become weak after it has been written several times.

11.Speed, Size and Cost of Memories: An ideal memory would be fast, large, and inexpensive. a

very fast memory can be implemented if SRAM chips are used. But these chips are expensive because

their basic cells have six transistors, which preclude packing a very large number of cells onto a single

chip. Thus, for cost reasons, it is impractical to build a large memory using SRAM chips. The

alternative is to use Dynamic RAM chips, which have much simpler basic cells and thus are much less

expensive. But such memories are significantly slower.

Although dynamic memory units in the range of hundreds of megabytes can be implemented at a

reasonable cost, the affordable size is still small compared to the demands of large programs with

voluminous data. A solution is provided by using secondary storage, mainly magnetic disks, to

implement large memory spaces. Very large disks are available at a reasonable price, and they are used

PREPARED BY C.YAMINI (ASST PROF)

extensively in computer systems. However, they are much slower than the semiconductor memory

units. So A huge amount of cost-effective storage can be provided by magnetic disks. A large, yet

affordable, main memory can be built with dynamic RAM technology. This leaves SRAMs to be used

in smaller units where speed is of the essence, such as in cache memories.

Figure 4.13 Memory hierarchy
All of these different types of memory units are employed effectively in a computer. The entire

computer memory can be viewed as the hierarchy depicted in Figure 4.13. The fastest access is to data

held in processor registers. Therefore, if we consider the registers to be part of the memory hierarchy,

then the processor registers are at the top in terms of the speed of access. Of course, the registers

provide only a minuscule portion of the required memory.

At the next level of the hierarchy is a relatively small amount of memory that can be

implemented directly on the processor chip. This memory, called a processor cache, holds copies of

instructions and data stored in a much larger memory that is provided externally. There are often two

levels of caches. A primary cache is always located on the processor chip. This cache is small because

it competes for space on the processor chip, which must implement many other functions.

12.MAPPING FUNCTIONS: The process of keeping information of moved data blocks from main

memory to cache memory is known as mapping. For example: Consider a cache consisting of 128

PREPARED BY C.YAMINI (ASST PROF)

blocks of 16 words each, for a total of 2048 (2K) words, and assumes that the main memory is

addressable by a 16-bit address. The main memory has 64K words, which we will view as 4K (4096)

blocks of 16 words each. These mappings can be done in three ways. They are Direct mapping,

Associative mapping and Set associative mapping.

Direct mapping: The simplest way to determine cache locations in which to store memory blocks is

the direct-mapping technique. In this technique, block j of the main memory maps onto block j modulo

128 of the cache, as depicted in Figure 4.15. Thus, whenever one of the main memory blocks 0, 128,

256,… is loaded in the cache, it is stored in cache block 0. Blocks 1, 129, 257,… are stored in cache

block 1, and so on. Since more than one memory block is mapped onto a given cache block position,

contention may arise for that position even when the cache is not full. For example, instructions of a

program may start in block 1 and continue in block 129, possibly after a branch. As this program is

executed, both of these blocks must be transferred to the block-1 position in the cache. Contention is

resolved by allowing the new block to overwrite the currently resident block. In this case, the

replacement algorithm is trivial.

Placement of a block in the cache is determined from the memory address. The memory address can be

divided into three fields, as shown in Figure 4.15. The low-order 4 bits select one of 16 words in a

block. When a new block enters the cache, the 7 -bit cache block field determines the cache position in

which this block must be stored. The high-order 5 bits of the memory address of the block are stored in

5 tag bits associated with its location in the cache. They identify which of the 32 blocks that are

mapped into this cache position are currently resident in the cache. As execution proceeds, the 7 -bit

cache block field of each address generated by the processor points to a particular block location in the

cache. The high-order 5 bits of the address are compared with the tag bits associated with that cache

location. If they match, then the desired word is in that block of the cache. If there is no match, then

the block containing the required word must first be read from the main memory and loaded into the

cache. The direct-mapping technique is easy to implement, but it is not very flexible.

Figure 4.15 Direct-mapped cache.

Associative mapping: Figure 4.16 shows a much more flexible mapping method, in which a main

memory block can be placed into any cache block position. In this case, 12 tag bits are required to

identify a memory block when it is resident in the cache. The tag bits of an address received from the

processor are compared to the tag bits of each block of the cache to see if the desired block is present.

This is called the associative-mapping technique. It gives complete freedom in choosing the cache

location in which to place the memory block. Thus, the space in the cache can be used more

PREPARED BY C.YAMINI (ASST PROF)

efficiently. A new block that has to be brought into the cache has to replace (eject) an existing block

only if the cache is full. In this case, we need an algorithm to select the block to be replaced. Many

replacement algorithms are possible; the cost of an associative cache is higher than the cost of a direct-

mapped cache because of the need to search all 128 tag patterns to determine whether a given block is

in the cache. A search of this kind is called an associative search. For performance reasons, the tags

must be searched in parallel.

Set-Associative mapping
A combination of the direct- and associative mapping techniques can be used. Blocks of the cache are

grouped into sets, and the mapping allows a block of the main memory to reside in any block of a

specific set. Hence, the contention problem of the direct method is eased by having a few choices for

block placement. At the same time, the hardware cost is reduced by decreasing the size of the

associative search. An example of this set-associative-mapping technique is shown in Figure 4.17 for a

cache with two blocks per set. In this case, memory blocks 0, 64, 128, …, 4032 map into cache set 0,

and they can occupy either of the two block positions within this set. Having 64 sets means that the 6-

bit set field of the address determines which set of the cache might contain the desired block. The tag

field of the address must then be associatively compared to the tags of the two blocks of the set to

check if the desired block is present. This two-way associative search is simple to implement.

The number of blocks per set is a parameter that can be selected to suit the requirements of a particular

computer. For the main memory and cache sizes in Figure 4.17, four blocks per set can be

accommodated by a 5-bit set field, eight blocks per set by a 4-bit set field, and so on. The extreme

condition of 128 blocks per set requires no set bits and corresponds to the fully associative technique,

with 12 tag bits. The other extreme of one block per set is the direct-mapping method. A cache that has

k blocks per set is referred to as a k-way set-associative cache.

12.improving cache performance: Two key factors in the commercial success of a computer are

performance and cost; the best possible performance at the lowest cost is the objective. The challenge

in considering design alternatives is to improve the performance without increasing the cost. A

common measure of success is the price/performance ratio. Performance depends on how fast machine

instructions can be brought into the processor for execution and how fast they can be executed.

The memory hierarchy is used for the best price/performance ratio. The main purpose of this hierarchy

is to create a memory I that the processor sees as having a short access time and a large capacity. Each

PREPARED BY C.YAMINI (ASST PROF)

level of the hierarchy plays an important role. The speed and efficiency of data transfer between

various levels of the hierarchy are also of great significance. It is beneficial if transfers to and from the

faster units can done at a rate equal to that of the faster unit. This is not possible if both the slow and

the fast units are accessed in the same manner, but it can be achieved when parallelism is used in the

organization of the slower unit. An effective way to introduce parallelism is to use an interleaved

organization.

INTERLEAVING: If the main memory of a computer is structured as a collection of physically

separate modules, each with its own address buffer register (ABR) and data buffer register (DBR),

memory access operations may proceed in more than one module at the same time. Thus, the aggregate

rate of transmission of words to and from the main memory system can be increased.

Figure 4.18 Addressing multiple-module memory systems.

How individual addresses are distributed over the modules is critical in determining the average

number of modules that can be kept busy as computations proceed. Two methods of address layout are

indicated in Figure 4.18. In the first case, the memory address generated by the processor is decoded as

shown in Figure 4.18a. The high- order k bits name one of n modules, and the low-order m bits name a

particular word in that module. When consecutive locations are accessed, as happens when a block of

data is transferred to a cache, only one module is involved. At the same time, however, devices with

direct memory access (DMA) ability may be accessing information in other memory modules.

The second and more effective way to address the modules is shown in Figure 4.18b. It is called

memory interleaving. The low-order k bits of the memory address select a module, and the high-order

m bits name a location within that module. In this way, consecutive addresses are located in successive

modules. Thus, any component of the system that generates requests for access to consecutive memory

locations can keep several modules busy at anyone time. This results in both faster accesses to a block

of data and higher average utilization of the memory system as a whole. To implement the interleaved

structure, there must be 2k modules; otherwise, there will be gaps of nonexistent locations in the

memory address space.

13.Virtual memory: Te physical main memory is not as large as the address space spanned by an

address issued by the processor. When a program does not completely fit into the main memory, the

parts of it not currently being executed are stored on secondary storage devices, such as magnetic

disks. Of

course, all parts of a program that are eventually executed are first brought into the main memory.

When a new segment of a program is to be moved into a full memory, it must replace another segment

PREPARED BY C.YAMINI (ASST PROF)

already in the memory. The operating system moves programs and data automatically between the

main memory and secondary storage. This process is known as swapping. Thus, the application

programmer does not need to be aware of limitations imposed by the available main memory.

Techniques that automatically move program and data blocks into the physical main memory when

they are required for execution are called virtual-memory techniques. Programs, and hence the

processor, reference an instruction and data space that is independent of the available physical main

memory space. The binary addresses that the processor issues for either instructions or data are called

virtual or logical addresses. These addresses are translated into physical addresses by a combination of

hardware and software components. If a virtual address refers to a part of the program or data space

that is currently in the physical memory, then the contents of the appropriate location in the main

memory are accessed immediately. On the other hand, if the referenced address is not in the main

memory, its contents must be brought into a suitable location in the memory before they can be used.

Figure 4.19 Virtual memory organization.
Figure 4.19 shows a typical organization that implements virtual memory. A special hardware unit,

called the Memory Management Unit (MMU), translates virtual addresses into physical addresses.

When the desired data (or instructions) are in the main memory, these data are fetched as described in

our presentation of the ache mechanism. If the data are not in the main memory, the MMU causes the

operating system to bring the data into the memory from the disk. The DMA scheme is used to

perform the data Transfer between the disk and the main memory.

13.ADDRESS TRANSLATION: The process of translating a virtual address into physical address is

known as address translation. It can be done with the help of MMU. A simple method for translating

virtual addresses into physical addresses is to assume that all programs and data are composed of

fixed-length units called pages, each of which consists of a block of words that occupy contiguous

locations in the main memory. Pages commonly range from 2K to 16K bytes in length. They constitute

the basic unit of information that is moved between the main memory and the disk whenever the

translation mechanism determines that a move is required. Pages should not be too small, because the

access time of a magnetic disk is much longer (several milliseconds) than the access time of the main

memory. The reason for this is that it takes a considerable amount of time to locate the data on the

disk, but once located, the data can be transferred at a rate of several megabytes per second. On the

other hand, if pages are too large it is possible that a substantial portion of a page may not be used, yet

this unnecessary data will occupy valuable space in the main memory.

PREPARED BY C.YAMINI (ASST PROF)

The cache bridges the speed gap between the processor and the main memory and is implemented in

hardware. The virtual-memory mechanism bridges the size and speed gaps between the main memory

and secondary storage and is usually implemented in part by software techniques. Conceptually, cache

techniques and virtual- memory techniques are very similar. They differ mainly in the details of their

implementation.

A virtual-memory address translation method based on the concept of fixed-length pages is shown

schematically in Figure 4.20. Each virtual address generated by the processor, whether it is for an

instruction fetch or an operand fetch/store operation, is interpreted as a virtual page number (high-

order bits) followed by an offset (low-order bits) that specifies the location of a particular byte (or

word) within a page. Information about the main memory location of each page is kept in a page table.

This information includes the main memory address where the page is stored and the current status of

the page. An area in the main memory that can hold one page is called a page frame. The starting

address of the page table is kept in a page table base register. By adding the virtual page number to the

contents of this register, the address of the corresponding entry in the page table is obtained. The

contents of this location give the starting address of the page if that page currently resides in the main

memory.

14. Memory management requirements: Virtual memory fills the gap between the physical memory

and secondary memory (disc), when one large program is being executed and it does not fit into the

PREPARED BY C.YAMINI (ASST PROF)

available physical memory, parts of it (pages) are moved from the disk into the main memory when

they are to be executed. Some software routines are needed to manage this movement of program

segments. Management routines are part of the operating system of the computer. It is convenient to

assemble the operating system routines into a virtual address space, called the system space, that is

separate from the virtual space in which user application programs reside. The latter space is called the

user space.

In fact, there may be a number of user spaces, one for each user. This is arranged by providing a

separate page table for each user program. The MMU uses a page table base register to determine the

address of the table to be used in the translation process. Hence, by changing the contents of this

register, the operating system can switch from one space to another. The physical main memory is thus

shared by the active pages of the system space and several user spaces. However, only the pages that

belong to one of these spaces are accessible at any given time.

In any computer system in which independent user programs coexist in the main memory, the notion

of protection must be addressed. No program should be allowed to destroy either the data or

instructions of other programs in the memory. Such protection can be provided in several ways. Let us

first consider the most basic form of protection. Recall that in the simplest case, the processor has two

states, the supervisor state and the user state. As the names suggest, the

processor is usually placed in the supervisor state when operating system routines are being executed

and in the user state to execute user programs.

15 Secondary memory: Most computer systems are economically realized in the form of magnetic

disks, optical disks, and magnetic tapes, which are usually referred to as secondary storage devices.

Secondary storage memories are Non volatile, Low cost per bit and mass storage of information.

MAGNETIC HARD DISKS: The storage medium in a magnetic-disk system consists of one or more

disks mounted on a common spindle. A thin magnetic film is deposited on each disk, usually on both

sides. The disks are placed in a rotary drive so that the magnetized surfaces move in close proximity to

read/write heads, as shown in Figure 4.26a. The disks rotate at a uniform speed. Each head consists of

a magnetic yoke and a magnetizing coil, as indicated in Figure 4.26b.

PREPARED BY C.YAMINI (ASST PROF)

Digital information can be stored on the magnetic film by applying current pulses of suitable polarity

to the magnetizing coil. This causes the magnetization of the film in the area immediately underneath

the head to switch to a direction parallel to the applied field. The same head can be used for reading the

stored information. In this case, changes in the magnetic field in the vicinity of the head caused by the

movement of the film relative to the yoke induce a voltage in the coil, which now serves as a sense

coil. The polarity of this voltage is monitored by the control circuitry to determine the state of

magnetization of the film. Only changes in the magnetic field under the head can be sensed during the

Read operation. Therefore, if the binary states 0 and 1 are represented by two opposite states of

magnetization, a voltage is induced in the head only at 0-to-l and at I-to-O transitions in the bit stream.

A long string of 0s or 1 s causes an induced voltage only at the beginning and end of the string. To

determine the number of consecutive 0s or 1s stored, a clock must provide information for

synchronization. In some early designs, a clock was stored on a separate track, where a change in

magnetization is forced for each bit period. Using the clock signal as a reference, the data stored on

other tracks can be read correctly.

The modem approach is to combine the clocking information with the data. Several different

techniques have been developed for such encoding. One simple scheme, depicted in Figure 4.26c, is

known as phase encoding or Manchester encoding. In this scheme, changes in magnetization occur for

each data bit, as shown in the figure. Note that a change in magnetization is guaranteed at the midpoint

of each bit period, thus providing the clocking information. The drawback of Manchester encoding is

its poor bit-storage density. The space required to represent each bit must be large enough to

accommodate two changes in magnetization. We use the Manchester encoding example to illustrate

how a self-clocking scheme may be implemented, because it is easy to understand. Other, more

compact codes have been developed. They are much more efficient and provide better storage density.

They also require more complex control circuitry.

16. FLOPPY DISKS: The devices previously discussed are known as hard or rigid disk units. Floppy

disks are smaller, simpler, and cheaper disk units that consist of a flexible, removable, plastic diskette

coated with magnetic material. The diskette is enclosed in a plastic jacket, which has an opening where

the read/write head makes contact with the diskette. A hole in the center of the diskette allows a

spindle mechanism in the disk drive to position and rotate the diskette.

One of the simplest schemes used in the first floppy disks for recording data is phase or Manchester

encoding mentioned earlier. Disks encoded in this way are said to have single density. A more

complicated variant of this scheme, called double density, is most often used in current standard floppy

disks. It increases the storage density by a factor of 2 but also requires more complex circuits in the

disk controller.

The main feature of floppy disks is their low cost and shipping convenience. However, they have much

smaller storage capacities, longer access times, and higher failure rates than hard disks. Current

standard floppy disks are 3.25 inches in diameter and store 1.44 or 2 Mbytes of data. Larger super-

floppy disks are also available. One type of such disks, known as the zip disk, can store more than 100

Mbytes. In recent years, the attraction of floppy-disk technology has been diminished by the

emergence of rewritable compact disks.

RAID DISK ARRAY: In 1988, researchers at the University of California-Berkeley proposed a

storage system based on multiple disks. They called it RAID, for Redundant Array of Inexpensive

Disks. Using multiple disks also makes it possible to improve the reliability of the overall system. Six

different configurations were proposed. They are known as RAID levels even though there is no

hierarchy involved.

PREPARED BY C.YAMINI (ASST PROF)

Figure 4.29 RAID Levels

17. OPTICAL DISKS: Large storage devices can also be implemented using optical means. The

familiar compact disk (CD), used in audio systems, was the first practical application of this

technology. Soon after, the optical technology was adapted to the computer environment to provide

high-capacity readonly storage referred to as CD-ROM. The first generation of CDs was developed in

the mid-1980s by the Sony and Philips companies, which also published a complete specification for

these devices.

CD Technology: The optical technology that is used for CD systems is based on a laser light source. A

laser beam is directed onto the surface of the spinning disk. Physical indentations in the surface are

arranged along the tracks of the disk. They reflect the focused beam toward a photo detector, which

detects the stored binary patterns.

The laser emits a coherent light beam that is sharply focused on the surface of the disk. Coherent light

consists of synchronized waves that have the same wavelength. If a coherent light beam is combined

with another beam of the same kind, and the two beams are in phase, then the result will be a brighter

beam. But, if the waves of the two beams are 180 degrees out of phase, they will cancel each other.

Thus, if a photo detector is used to detect the beams, it will detect a bright spot in the first case and a

dark spot in the second case.

A cross-section of a small portion of a CD is shown in Figure 4.30a. The bottom layer is polycarbonate

plastic, which functions as a clear glass base. The surface of this plastic is programmed to store data by

indenting it with pits. The unintended parts are called lands. A thin layer of reflecting aluminum

material is placed on top of a programmed disk. The aluminum is then covered by a protective acrylic.

Finally, the topmost layer is deposited and stamped with a label. The total thickness of the disk is

1.2mm. Almost all of it is contributed by the polycarbonate plastic. The other layers are very thin. The

laser source and the photodetector are positioned below the polycarbonate plastic. The emitted beam

PREPARED BY C.YAMINI (ASST PROF)

travels through this plastic, reflects off the aluminum layer, and travels back toward the photo detector.

Note that from the laser side, the pits actually appear as bumps with respect to the lands.

18. OTHER STORAGE DEVICES

USB flash drive: A USB flash drive is a data storage device that consists of flash memory with an

integrated Universal Serial Bus (USB) interface. USB flash drives are typically removable and

rewritable, and physically much smaller than a floppy disk. Most weigh less than 30 grams. As of

January 2012 drives of 1 terabytes (TB) are available and storage capacities as large as 2 terabytes are

planned, with steady improvements in size and price per capacity expected. Some allow up to 100,000

write/erase cycles (depending on the exact type of memory chip used) and 10 years shelf storage time.

Zip drive: The Zip drive is a medium-capacity removable disk storage system that was introduced by

Iomega in late 1994. Originally, Zip disks launched with capacities of 100 MB, but later versions

increased this to first 250 MB and then 750 MB.

Memory card: A memory card or flash card is an electronic flash memory data storage device used

for storing digital information. They are commonly used in many electronic devices, including digital

cameras, mobile phones, laptop computers, MP3 players, and video game consoles. They are small, re-

recordable, and able to retain data without power.

20. AUXILIARY STORAGE DEVICES: Auxiliary storage also known as auxiliary memory or

secondary storage, is the memory that supplements the main storage. This is a long-term, non-volatile

memory. The term non-volatile means that stores and retains the programs and data even after the

computer is switched off. Unlike RAM which loses the contents when the computer is turned off, and

ROM, to which it is not possible to add anything new, auxiliary storage devices allow the computer to

record information semi- permanently, so it can be read later by the same computer or by another

computer. Auxiliary storage devices are also useful in transferring data or programs from one

computer to another.

They also function as back-up devices which allow to back-up the valuable information. So even if by

some accident the computer crashes and the stored data is unrecoverable, we can restore it from the

back-ups. The most common types of auxiliary storage devices are magnetic tapes, magnetic disks,

floppy disks, hard disks, etc.There are two types of auxiliary storage devices.

This classification is based on the type of data access:

1. sequential

2. random.

Based on the type of access, they are called sequential-access media or random-media. In the case of

sequential-access media, the data stored in the media can only be read in sequence and to get to a

particular point on the media, we have to go through all the preceding points. Magnetic tapes are

examples of sequential-access media. In contrast, disks are random-access also called direct-access

media because a disk drive can access any point at random without passing through intervening points.

Other examples of direct access media are floppy diskettes, optical disks, zip disks, etc.

MAGNETIC TAPE: Magnetic tape is a magnetically coated strip of plastic on which data can be

encoded. Tapes for computers are similar to the tapes used to store music. Some computers, in fact,

enable us to use normal cassette tapes. Storing data on tapes is considerably cheaper than storing data

on disks. Tapes also have large storage capacities, ranging from a few hundred kilobytes to several

gigabytes. Accessing data on tapes, however, is much slower than accessing data on disks. Because

PREPARED BY C.YAMINI (ASST PROF)

tapes are so slow, they are generally used only for long-term storage and backup. Data to be used

regularly is almost always kept on a disk. Tapes are also used for transporting large amounts of data.

Tapes come in a variety of sizes and formats as given in Table 4.2.1. Tapes are sometimes called

streamers or streaming tapes.

Helical-scan Cartridge: It’s a type of magnetic tape that uses the same technology as VCR tapes. The

term helical scan usually refers to 8-mm tapes, although 4-mm tapes (called DAT tapes) use the same

technology. The 8-mm helical-scan tapes have data capacities from 2.5GB to 5 GB.

DAT Cartridge: This is a type of magnetic tape that uses an ingenious scheme called helical scan to

record data, as shown in Fig. 4.2.1. A DAT cartridge is slightly larger than a credit card and contains a

magnetic tape that can hold from 2 to 24 gigabytes of data. It can support data transfer rates of about 2

MBPS (Million Bytes Per Second). Like other types of tapes, DATs are sequential-access media. The

most common format for DAT cartridges is DDS (Digital Data Storage) which is the industry standard

for digital audio tape (DAT) formats. The latest format, DDS-3, specifies tapes that can hold 24 GB

(the equivalent of over 40 CD ROMs) and support data transfer rates of 2 MBPS.

PREPARED BY C.YAMINI (ASST PROF)

Carry Look-Ahead Adder :

In ripple carry adders, for each adder block, the two bits that are to be added are available instantly.

However, each adder block waits for the carry to arrive from its previous block. So, it is not possible

to generate the sum and carry of any block until the input carry is known. The block waits for

the block to produce its carry. So there will be a considerable time delay which is carry

propagation delay.

Consider the above 4-bit ripple carry adder. The sum is produced by the corresponding full adder

as soon as the input signals are applied to it. But the carry input is not available on its final

steady state value until carry is available at its steady state value. Similarly depends on

and on . Therefore, though the carry must propagate to all the stages in order that output

and carry settle their final steady-state value.

The propagation time is equal to the propagation delay of each adder block, multiplied by the

number of adder blocks in the circuit. For example, if each full adder stage has a propagation delay

of 20 nanoseconds, then will reach its final correct value after 60 (20 × 3) nanoseconds. The

situation gets worse, if we extend the number of stages for adding more number of bits.

Carry Look-ahead Adder :

A carry look-ahead adder reduces the propagation delay by introducing more complex hardware. In

this design, the ripple carry design is suitably transformed such that the carry logic over fixed groups

of bits of the adder is reduced to two-level logic. Let us discuss the design in detail.

PREPARED BY C.YAMINI (ASST PROF)

Consider the full adder circuit shown above with corresponding truth table. We define two variables

as ‘carry generate’ and ‘carry propagate’ then,

Multiplication Algorithm in Signed Magnitude Representation:Multiplication of two fixed point

binary number in signed magnitude representation is done with process of successive shift and add

operation.

In the multiplication process we are considering successive bits of the multiplier, least significant bit

first.

If the multiplier bit is 1, the multiplicand is copied down else 0’s are copied down.

The numbers copied down in successive lines are shifted one position to the left from the previous

number.

Finally numbers are added and their sum form the product.

The sign of the product is determined from the sign of the multiplicand and multiplier. If they are

alike, sign of the product is positive else negative.

PREPARED BY C.YAMINI (ASST PROF)

Hardware Implementation :

Following components are required for the Hardware Implementation of multiplication algorithm :

Flowchart of Multiplication:

1. Initially multiplicand is stored in B register and multiplier is stored in Q register.

2. Sign of registers B (Bs) and Q (Qs) are compared using XOR functionality (i.e., if both the signs

are alike, output of XOR operation is 0 unless 1) and output stored in As (sign of A register).

Note: Initially 0 is assigned to register A and E flip flop. Sequence counter is initialized with

value n, n is the number of bits in the Multiplier.

3. Now least significant bit of multiplier is checked. If it is 1 add the content of register A with

Multiplicand (register B) and result is assigned in A register with carry bit in flip flop E. Content

of E A Q is shifted to right by one position, i.e., content of E is shifted to most significant bit

(MSB) of A and least significant bit of A is shifted to most significant bit of Q.

PREPARED BY C.YAMINI (ASST PROF)

4. If Qn = 0, only shift right operation on content of E A Q is performed in a similar fashion.

5. Content of Sequence counter is decremented by 1.

6. Check the content of Sequence counter (SC), if it is 0, end the process and the final product is

present in register A and Q, else repeat the process.

Booth’s Algorithm: Booth algorithm gives a procedure for multiplying binary integers in signed

2’s complement representation in efficient way, i.e., less number of additions/subtractions required.

It operates on the fact that strings of 0’s in the multiplier require no addition but just shifting and a

string of 1’s in the multiplier from bit weight 2^k to weight 2^m can be treated as 2^(k+1) to 2^m.

As in all multiplication schemes, booth algorithm requires examination of the multiplier bits and

shifting of the partial product. Prior to the shifting, the multiplicand may be added to the partial

product, subtracted from the partial product, or left unchanged according to following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there

was a previous ‘1’) in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous multiplier

bit.

Hardware Implementation of Booths Algorithm – The hardware implementation of the booth

algorithm requires the register configuration shown in the figure below.

Booth’s Algorithm Flowchart –

We name the register as A, B and Q, AC, BR and QR respectively. Qn designates the least

significant bit of multiplier in the register QR. An extra flip-flop Qn+1is appended to QR to facilitate

a double inspection of the multiplier.The flowchart for the booth algorithm is shown below.

PREPARED BY C.YAMINI (ASST PROF)

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set to a number n

equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and Qn+1are

inspected. If the two bits are equal to 10, it means that the first 1 in a string has been encountered.

This requires subtraction of the multiplicand from the partial product in AC. If the 2 bits are equal to

01, it means that the first 0 in a string of 0’s has been encountered. This requires the addition of the

multiplicand to the partial product in AC.

When the two bits are equal, the partial product does not change. An overflow cannot occur because

the addition and subtraction of the multiplicand follow each other. As a consequence, the 2 numbers

that are added always have a opposite signs, a condition that excludes an overflow. The next step is

to shift right the partial product and the multiplier (including Qn+1). This is an arithmetic shift right

(ashr) operation which AC and QR ti the right and leaves the sign bit in AC unchanged. The

sequence counter is decremented and the computational loop is repeated n times.

Restoring Division Algorithm For Unsigned Integer: A division algorithm provides a quotient and

a remainder when we divide two number. They are generally of two type slow algorithm and fast

PREPARED BY C.YAMINI (ASST PROF)

algorithm. Slow division algorithm are restoring, non-restoring, non-performing restoring, SRT

algorithm and under fast comes Newton–Raphson and Goldschmidt.

In this article, will be performing restoring algorithm for unsigned integer. Restoring term is due to

fact that value of register A is restored after each iteration.

Here, register Q contain quotient and register A contain remainder. Here, n-bit dividend is loaded in

Q and divisor is loaded in M. Value of Register is initially kept 0 and this is the register whose value

is restored during iteration due to which it is named Restoring.

Here, register Q contain quotient and register A contain remainder. Here, n-bit dividend is loaded in

Q and divisor is loaded in M. Value of Register is initially kept 0 and this is the register whose value

is restored during iteration due to which it is named Restoring.

Let’s pick the step involved:

 Step-1: First the registers are initialized with corresponding values (Q = Dividend, M = Divisor,

A = 0, n = number of bits in dividend)

 Step-2: Then the content of register A and Q is shifted left as if they are a single unit

 Step-3: Then content of register M is subtracted from A and result is stored in A

 Step-4: Then the most significant bit of the A is checked if it is 0 the least significant bit of Q is

set to 1 otherwise if it is 1 the least significant bit of Q is set to 0 and value of register A is

restored i.e the value of A before the subtraction with M

PREPARED BY C.YAMINI (ASST PROF)

 Step-5: The value of counter n is decremented

 Step-6: If the value of n becomes zero we get of the loop otherwise we repeat from step 2

 Step-7: Finally, the register Q contain the quotient and A contain remainder

Examples:

Perform Division Restoring Algorithm

Dividend = 11

Divisor = 3

n M A Q Operation

4 00011 00000 1011 initialize

00011 00001 011_ shift left AQ

00011 11110 011_ A=A-M

00011 00001 0110 Q[0]=0 And restore A

3 00011 00010 110_ shift left AQ

00011 11111 110_ A=A-M

00011 00010 1100 Q[0]=0

2 00011 00101 100_ shift left AQ

00011 00010 100_ A=A-M

00011 00010 1001 Q[0]=1

1 00011 00101 001_ shift left AQ

00011 00010 001_ A=A-M

00011 00010 0011 Q[0]=1

Floating Point Arithmetic Unit: When you have to represent very small or very large numbers, a

fixed point representation will not do. The accuracy will be lost. Therefore, you will have to look at

floating-point representations, where the binary point is assumed to be floating. When you consider a

decimal number 12.34 * 107, this can also be treated as 0.1234 * 109, where 0.1234 is the fixed-point

mantissa. The other part represents the exponent value, and indicates that the actual position of the

binary point is 9 positions to the right (left) of the indicated binary point in the fraction. Since the

binary point can be moved to any position and the exponent value adjusted appropriately, it is called a

PREPARED BY C.YAMINI (ASST PROF)

floating-point representation. By convention, you generally go in for a normalized representation,

wherein the floating-point is placed to the right of the first nonzero (significant) digit. The base need

not be specified explicitly and the sign, the significant digits and the signed exponent constitute the

representation.

The IEEE (Institute of Electrical and Electronics Engineers) has produced a standard for floating

point arithmetic. This standard specifies how single precision (32 bit) and double precision (64 bit)

floating point numbers are to be represented, as well as how arithmetic should be carried out on them.

The IEEE single precision floating point standard representation requires a 32 bit word, which may be

represented as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are

the exponent bits, ‘E’, and the final 23 bits are the fraction ‘F’. Instead of the signed exponent E, the

value stored is an unsigned integer E’ = E + 127, called the excess-127 format. Therefore, E’ is in the

range 0 £ E’ £ 255.

PREPARED BY C.YAMINI (ASST PROF)

PREPARED BY C.YAMINI (ASST PROF)

UNIT 5

 BASIC PROCESSING UNIT

SOME FUNDAMENTAL CONCEPTS

• To execute an instruction, processor has to perform following 3 steps:
1) Fetch contents of memory-location pointed to by PC. Content of this location is an

instruction to be executed. The instructions are loaded into IR, Symbolically, this operation

can be written as
IR [[PC]]

2) Increment PC by 4
PC [PC] +4

3) Carry out the actions specified by instruction (in the IR).
• The first 2 steps are referred to as fetch phase;

Step 3 is referred to as execution phase

SINGLE BUS ORGANIZATION

• MDR has 2 inputs and 2 outputs. Data may be loaded
→ into MDR either from memory-bus (external) or

→ from processor-bus (internal).

• MAR‟s input is connected to

internal-bus, and MAR‟s output is

connected to external-bus.
• Instruction-decoder & control-unit is responsible for

→ issuing the signals that control the operation of all the units inside the

processor (and for interacting with memory bus).
→ implementing the actions specified by the instruction (loaded in the IR)

• Registers R0 through R(n-1) are provided for general purpose use by programmer.

• Three registers Y, Z & TEMP are used by processor for temporary storage during execution of

some instructions. These are transparent to the programmer i.e. programmer need not be concerned

with them because they are never referenced explicitly by any instruction.
• MUX(Multiplexer) selects either

→ output of Y or
→ constant-value 4(is used to increment PC content).This is provided as input A of ALU.

• B input of ALU is obtained directly from processor-bus.
• As instruction execution progresses, data are transferred from one register to another, often

passing through ALU to perform arithmetic or logic operation.
• An instruction can be executed by performing one or more of the

following operations:
1) Transfer a word of data from one processor-register to another or to the

ALU.
2) Perform arithmetic or a logic operation and store the result in a processor-register.
3) Fetch the contents of a given memory-location and load them into a processor-register.

4) Store a word of data from a processor-register into a given memory-location.

PREPARED BY C.YAMINI (ASST PROF)

REGISTER TRANSFERS

• Instruction execution involves a sequence of steps in which data are transferred from one register to
another.

• Input & output of register Ri is connected to bus via switches controlled by 2 control-signals:
Riin & Riout. These are called gating signals.
• When Riin=1, data on bus is loaded into Ri.

Similarly, when Riout=1, content of Ri is placed on bus.
• When Riout=0, bus can be used for transferring data from other registers.
• All operations and data transfers within the processor take place within time-periods defined by

the processor- clock.

• When edge-triggered flip-flops are not used, 2 or more clock-signals may be needed to

guarantee proper transfer of data. This is known as multiphase clocking.

Input & Output Gating for one Register Bit

• A 2-input multiplexer is used to select the data applied to the input of an edge-triggered D flip-flop.

• When Riin=1, mux selects data on bus. This data will be loaded into flip-flop at

rising-edge of clock. When Riin=0, mux feeds back the value currently stored in

flip-flop.
• Q output of flip-flop is connected to bus via a tri-state gate.

When Riout=0, gate's output is in the high-impedance state. (This

corresponds to the open- circuit state of a switch).

When Riout=1, the gate drives the bus to 0 or 1, depending on the value of Q.

PREPARED BY C.YAMINI (ASST PROF)

PERFORMING AN ARITHMETIC OR LOGIC OPERATION

• The ALU performs arithmetic operations on the 2 operands applied to its A and B inputs.
• One of the operands is output of MUX &

the other operand is obtained directly from bus.
• The result (produced by the ALU) is stored temporarily in register Z.
• The sequence of operations for [R3] [R1]+[R2] is as follows

1) R1out, Yin //transfer the contents of R1 to Y register
2) R2out, SelectY, Add, Zin //R2 contents are transferred directly to B input of ALU.

// The numbers of added. Sum stored in register Z
3) Zout, R3in //sum is transferred to register R3

• The signals are activated for the duration of the clock cycle corresponding to that step. All other
signals are inactive.

Write the complete control sequence for the instruction : Move (Rs),Rd

• This instruction copies the contents of memory-location pointed to by Rs into Rd. This is a

memory read operation. This requires the following actions

PREPARED BY C.YAMINI (ASST PROF)

→ fetch the instruction
→ fetch the operand (i.e. the contents of the memory-location pointed by Rs).
→ transfer the data to Rd.

• The control-sequence is written as follows
1) PCout, MARin, Read, Select4, Add, Zin
2) Zout, PCin, Yin, WMFC
3) MDRout, IRin
4) Rs, MARin, Read
5) MDRinE, WMFC
6) MDRout, Rd, End

FETCHING A WORD FROM MEMORY

• To fetch instruction/data from memory, processor transfers required address to MAR (whose

output is connected to address-lines of memory-bus).
At the same time, processor issues Read signal on control-lines of memory-bus.

• When requested-data are received from memory, they are stored in MDR. From MDR, they are

transferred to other registers

• MFC (Memory Function Completed): Addressed-device sets MFC to 1 to indicate that the

contents of the specified location
→ have been read &
→ are available on data-lines of memory-bus

• Consider the instruction Move (R1),R2. The sequence of steps is:
1) R1out, MARin, Read ;desired address is loaded into MAR & Read command is issued
2) MDRinE, WMFC ;load MDR from memory bus & Wait for MFC response from memory
3) MDRout, R2in ;load R2 from MDR

where WMFC=control signal that causes

PREPARED BY C.YAMINI (ASST PROF)

processor's control circuitry to wait for arrival

of MFC signal

Storing a Word in Memory

• Consider the instruction Move R2,(R1). This requires the following sequence:
1) R1out, MARin ;desired address is loaded into MAR
2) R2out, MDRin, Write ;data to be written are loaded into MDR & Write command is

issued
3) MDRoutE, WMFC ;load data into memory location pointed by R1 from MDR

EXECUTION OF A COMPLETE INSTRUCTION

• Consider the instruction Add (R3),R1 which adds the contents of a memory-location pointed by

R3 to register R1. Executing this instruction requires the following actions:
1) Fetch the instruction.
2) Fetch the first operand.
3) Perform the addition.
4) Load the result into R1.

• Control sequence for execution of this instruction is as follows
1) PCout, MARin, Read, Select4, Add, Zin
2) Zout, PCin, Yin, WMFC
3) MDRout, IRin
4) R3out, MARin, Read
5) R1out, Yin, WMFC
6) MDRout, SelectY, Add, Zin
7) Zout, R1in, End

• Instruction execution proceeds as follows:
Step1--> The instruction-fetch operation is initiated by loading contents of PC into MAR &

sending a Read request to memory. The Select signal is set to Select4, which causes the

Mux to select constant 4. This value is added to operand at input B (PC‟s content), and the

result is stored in Z
Step2--> Updated value in Z is moved to PC.
Step3--> Fetched instruction is moved into MDR and then to IR.

Step4--> Contents of R3 are loaded into MAR & a memory read

signal is issued. Step5--> Contents of R1 are transferred to Y to

prepare for addition.

Step6--> When Read operation is completed, memory-operand is available

in MDR, and the addition is performed.
Step7--> Sum is stored in Z, then transferred to R1.The End signal causes a

new instruction fetch cycle to begin by returning to step1.

BRANCHING INSTRUCTIONS

• Control sequence for an unconditional branch instruction is as follows:
1) PCout, MARin, Read, Select4, Add, Zin
2) Zout, PCin, Yin, WMFC
3) MDRout, IRin
4) Offset-field-of-IRout, Add, Zin
5) Zout, PCin, End

• The processing starts, as usual, the fetch phase ends in step3.
• In step 4, the offset-value is extracted from IR by instruction-decoding circuit.

PREPARED BY C.YAMINI (ASST PROF)

• Since the updated value of PC is already available in register Y, the offset X is gated onto the

bus, and an addition operation is performed.
• In step 5, the result, which is the branch-address, is loaded into the PC.
• The offset X used in a branch instruction is usually the difference between the branch target-

address and the address immediately following the branch instruction. (For example, if the branch

instruction is at location 1000 and branch target-address is 1200, then the value of X must be 196,

since the PC will be containing the address 1004 after fetching the instruction at location 1000).

• In case of conditional branch, we need to check the status of the condition-codes before loading a

new value into the PC.
e.g.: Offset-field-of-IRout, Add, Zin, If N=0 then End

If N=0, processor returns to step 1 immediately

after step 4. If N=1, step 5 is performed to load

a new value into PC.

MULTIPLE BUS ORGANIZATION

• All general-purpose registers are combined into a single block called the register file.
• Register-file has 3 ports. There are 2 outputs allowing the contents of 2 different registers to be

simultaneously placed on the buses A and B.
• Register-file has 3 ports.

1) Two output-ports allow the contents of 2 different registers to be simultaneously placed on
buses A & B.

2) Third input-port allows data on bus C to be loaded into a third register during the same
clock-cycle.

• Buses A and B are used to transfer source-operands to A & B inputs of ALU.
• Result is transferred to destination over bus C.
• Incrementer-unit is used to increment PC by 4.
• Control sequence for the instruction Add R4,R5,R6 is as follows

1) PCout, R=B, MARin, Read, IncPC
2) WMFC
3) MDRout, R=B, IRin
4) R4outA, R5outB, SelectA, Add, R6in, End

• Instruction execution proceeds as follows:
Step 1--> Contents of PC are passed through ALU using R=B control-signal and

loaded into MAR to start a memory Read operation. At the same time,

PC is incremented by 4.
Step2--> Processor waits for MFC signal from memory.
Step3--> Processor loads requested-data into MDR, and then

transfers them to IR. Step4--> The instruction is decoded and add

operation take place in a single step.

PREPARED BY C.YAMINI (ASST PROF)

Note:

To execute instructions, the processor must have some means of generating the control signals

needed in the proper sequence. There are two approaches for this purpose:
1) Hardwired control and 2) Microprogrammed control.

HARDWIRED CONTROL

• Decoder/encoder block is a combinational-circuit that generates required control-outputs

depending on state of all its inputs.
• Step-decoder provides a separate signal line for each step in the control sequence.

Similarly, output of instruction-decoder consists of a separate line for each machine

instruction.

• For any instruction loaded in IR, one of the output-lines INS1 through INSm is set to 1, and all

other lines are set to 0.

• The input signals to encoder-block are combined to generate the individual control-signals Yin,

PCout, Add, End and so on.
• For example, Zin=T1+T6.ADD+T4.BR ;This signal is asserted during time-slot T1 for all

instructions,

PREPARED BY C.YAMINI (ASST PROF)

during T6 for an Add instruction
during T4 for unconditional branch instruction

• When RUN=1, counter is incremented by 1 at the end of

every clock cycle. When RUN=0, counter stops counting.

• Sequence of operations carried out by this machine is determined by wiring of logic elements,

hence the name “hardwired”.

• Advantage: Can operate at

high speed. Disadvantage:

Limited flexibility.

PREPARED BY C.YAMINI (ASST PROF)

COMPLETE PROCESSOR

• This has separate processing-units to deal with integer data and floating-point data.
• A data-cache is inserted between these processing-units & main-memory.
• Instruction-unit fetches instructions

→ from an instruction-cache or
→ from main-memory when desired instructions are not already in cache

• Processor is connected to system-bus &
hence to the rest of the computer by means of a bus interface

• Using separate caches for instructions & data is common practice in many processors today.

• A processor may include several units of each type to increase the potential for concurrent

operations.

MICROPROGRAMMED CONTROL

• Control-signals are generated by a program similar to machine language programs.

• Control word(CW) is a word whose individual bits represent various control-signals(like Add,
End, Zin). {Each of the control-steps in control sequence of an instruction defines a unique
combination of 1s & 0s in the CW}.
• Individual control-words in microroutine are referred to as microinstructions.
• A sequence of CWs corresponding to control-sequence of a machine instruction constitutes the

microroutine.
• The microroutines for all instructions in the instruction-set of a computer are stored in a special

memory called the control store(CS).

PREPARED BY C.YAMINI (ASST PROF)

• Control-unit generates control-signals for any instruction by sequentially reading CWs of

corresponding microroutine from CS.
• Microprogram counter(µPC) is used to read CWs sequentially from CS.
• Every time a new instruction is loaded into IR, output of "starting address generator" is loaded into

µPC.
• Then, µPC is automatically incremented by clock,

causing successive microinstructions to be read from CS.

Hence, control-signals are delivered to various parts of processor in correct sequence.

ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT (TO SUPPORT

CONDITIONAL BRANCHING)

PREPARED BY C.YAMINI (ASST PROF)

• In case of conditional branching, microinstructions specify which of the external inputs,

condition-codes should be checked as a condition for branching to take place.

• The starting and branch address generator block loads a new address into µPC when a

microinstruction instructs it to do so.
• To allow implementation of a conditional branch, inputs to this block consist of

→ external inputs and condition-codes
→ contents of IR

• µPC is incremented every time a new microinstruction is fetched from microprogram memory

except in following situations

i) When a new instruction is loaded into IR, µPC is loaded with starting-address of

microroutine for that instruction.

ii) When a Branch microinstruction is encountered and branch condition is satisfied, µPC

is loaded with branch-address.

iii) When an End microinstruction is encountered, µPC is loaded with address of first CW in

microroutine for instruction fetch cycle.

PREPARED BY C.YAMINI (ASST PROF)

MICROINSTRUCTIONS

• Drawbacks of microprogrammed control:
1) Assigning individual bits to each control-signal results in long

microinstructions because the number of required signals is usually

large.
2) Available bit-space is poorly used because

only a few bits are set to 1 in any given microinstruction.
• Solution: Signals can be grouped because

1) Most signals are not needed simultaneously.
2) Many signals are mutually exclusive.

• Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into individual control
signals.

• Advantage: This method results in a smaller control-store (only 20 bits are needed to store the

patterns for the 42 signals).

Vertical organization Horizontal organization

Highly encoded schemes that use compact

codes to specify only a small number of
control functions in each microinstruction
are referred to as a vertical organization

The minimally encoded scheme in which

many resources can be controlled with a
single microinstuction is called a horizontal
organization

This approach results in considerably slower
operating speeds because more
micrinstructions are needed to perform the
desired control functions

This approach is useful when a higher
operating speed is desired and when the
machine structure allows parallel use of
resources

Microinstruction

• MICROPROGRAM SEQUENCING Two major disadvantage of microprogrammed control is:

1) Having a separate microroutine for each machine instruction results in a large total

number of microinstructions and a large control-store.
2) Execution time is longer because it takes more time to carry out the required branches.

• Consider the instruction Add src,Rdst ;which adds the source-operand to the contents of Rdst and

places the sum in Rdst.

• Let source-operand can be specified in following addressing modes: register, autoincrement,

autodecrement and indexed as well as the indirect forms of these 4 modes.

• Each box in the chart corresponds to a microinstruction that controls the transfers and operations

indicated within the box.
• The microinstruction is located at the address indicated by the octal number (001,002).

BRANCH ADDRESS MODIFICATION USING BIT-ORING

• Consider the point labeled in the figure. At this point, it is necessary to choose between direct and

indirect addressing modes.

• If indirect-mode is specified in the instruction, then the microinstruction in location 170 is

performed to fetch the operand from the memory.
If direct-mode is specified, this fetch must be bypassed by branching immediately to location 171.

• The most efficient way to bypass microinstruction 170 is to have the preceding branch

microinstructions specify the address 170 and then use an OR gate to change the LSB of this address

to 1 if the direct addressing mode is involved. This is known as the bit-ORing technique.

WIDE BRANCH ADDRESSING

• The instruction-decoder(InstDec) generates the starting-address of the microroutine that

implements the instruction that has just been loaded into the IR.

• Here, register IR contains the Add instruction, for which the instruction decoder generates the

microinstruction address 101. (However, this address cannot be loaded as is into the μPC).

• The source-operand can be specified in any of several addressing-modes. The bit-ORing

technique can be used to modify the starting-address generated by the instruction-decoder to reach

the appropriate path.

Use of WMFC

• WMFC signal is issued at location 112 which causes a branch to the microinstruction in location 171.
• WMFC signal means that the microinstruction may take several clock cycles to complete. If the

branch is allowed to happen in the first clock cycle, the microinstruction at location 171 would be

fetched and executed prematurely. To avoid this problem, WMFC signal must inhibit any change in

the contents of the μPC during the waiting-period. Detailed Examination

• Consider Add (Rsrc)+,Rdst; which adds Rsrc content to Rdst content, then stores the sum in Rdst

and finally increments Rsrc by 4 (i.e. auto-increment mode).

• In bit 10 and 9, bit-patterns 11, 10, 01 and 00 denote indexed, auto-decrement, auto-increment

and register modes respectively. For each of these modes, bit 8 is used to specify the indirect

version.
• The processor has 16 registers that can be used for addressing purposes; each specified using a 4-bit-

code.
• There are 2 stages of decoding:

1) The microinstruction field must be decoded to determine that an Rsrc or Rdst register is
involved.

The de

Basic concepts of pipeline: In computer architecture Pipelining means executing machine instructions

concurrently. The pipelining is used in modern computers to achieve high performance. The speed of

execution of programs is influenced by many factors. One way to improve performance is to use faster

circuit technology to build the processor and the main memory. Another possibility is to arrange the

hardware so that more than one operation can be performed at the same time. In this way, the number of

operations performed per second is increased even though the elapsed time needed to perform anyone

operation is not changed.

Pipelining is a particularly effective way of organizing concurrent activity in a computer system. The

basic idea is very simple. It is frequently encountered in manufacturing plants, where pipelining is

commonly known as an assembly-line operation. The processor executes a program by fetching and

executing instructions, one after the other. Let Fi and Ei refer to the fetch and execute steps for

instruction Ii. Executions of a program consists of a sequence of fetch and execute steps, as shown in

Figure 3.l.

Now consider a computer that has two separate hardware units, one for fetching instructions and another

for executing them, as shown in Figure 3.2. The instruction fetched by the fetch unit is deposited in an

intermediate storage buffer, B1. This buffer is needed to enable the execution unit to execute the

instruction while the fetch unit is fetching the next instruction. The results of execution are deposited in

the destination location specified by the instruction. The data can be operated by the instructions are

inside the block labeled "Execution unit".

Figure 3.2 Hardware organization of pipelining.

The computer is controlled by a clock whose period is such that the fetch and execute steps of any

instruction can each be completed in one clock cycle. Operation of the computer proceeds as in Figure

3.3. In the first clock cycle, the fetch unit fetches an instruction I1 (step F1) and stores it in buffer Bl at

the end of the clock cycle. In the second clock cycle, the instruction fetch unit proceeds with the fetch

operation for instruction I2 (step F2). Meanwhile, the execution unit performs the operation specified by

instruction I1, which is available to it in buffer Bl (step E1). By the end of the second clock cycle, the

execution of instruction I1 is completed and instruction I2 is available. Instruction I2 is stored in B1,

replacing I1, which is no longer needed. Step E2 is performed by the execution unit during the third

clock cycle, while instruction I3 is being fetched by the fetch unit. In this manner, both the fetch and

execute units are kept busy all the time.

Figure 3.3 Pipelined executions of instructions (Instructions Pipelining).

A pipelined processor may process each instruction in four steps, as follows:

F Fetch: read the instruction from the memory.

D Decode: decode the instruction and fetch the source operand(s).

E Execute: perform the operation specified by the instruction.

W Write: store the result in the destination location.

The sequence of events for this case is shown in Figure 8.4. Four instructions are in progress at any

given time. This means that four distinct hardware units are needed, as shown in Figure 8.5. These units

must be capable of performing their tasks simultaneously and without interfering with one another.

Information is passed from one unit to the next through a storage buffer.

Figure 3.4 Instruction execution divided into four steps.

Figure 3.5 Hardware organization of a 4-stage pipeline.

For example, during clock cycle 4, the information in the buffers is as follows:

 Buffer B1 holds instruction I3, which was fetched in cycle 3 and is being decoded by the instruction-

decoding unit.

 Buffer B2 holds both the source operands for instruction I2 and the specification of the operation to

be performed.

 Buffer B3 holds the results produced by the execution unit and the destination information for

instruction 11.

PIPELINE PERFORMANCE: The pipelined processor in Figure 3.4 completes the processing of one

instruction in each clock cycle, which means that the rate of instruction processing is four times that of

sequential operation. The potential increase in performance resulting from pipelining is proportional to

the number of pipeline stages. However, this increase would be achieved only if pipelined operation as

depicted in Figure 3.4 could be sustained without interruption throughout program execution.

Unfortunately, this is not the case.

Figure 3.6 Effect of an execution operation taking more than one clock cycle.

Figure 3.6 shows an example in which the operation specified in instruction I2 requires three cycles to

complete, from cycle 4 through cycle 6. Thus, in cycles 5 and 6, the Write stage must be told to do

nothing, because it has no data to work with. Meanwhile, the information in buffer B2 must remain

intact until the Execute stage has completed its operation. This means that stage 2 and, in turn, stage1

are blocked from accepting new instructions because the information in B1 cannot be overwritten. Thus,

steps D4 and F5 must be postponed as shown in figure 3.6.

Pipelined operation in Figure 3.6 is said to have been stalled for two clock cycles. Normal pipelined

operation resumes in cycle 7. Any condition that causes the pipeline to stall is called a hazard.

 I. DATA HAZARDS: A data hazard is any condition in which either the source or the destination

operands of an instruction are not available at the time expected in the pipeline. As a result some

operation has to be delayed, and the pipeline stalls.

II. CONTROL/INSTRUCTION HAZARDS: The pipeline may also be stalled because of a delay in

the availability of an instruction. For example, this may be a result of a miss in the cache, requiring the

instruction to be fetched from the main memory. Such hazards are often called control hazards or

instruction hazards.

Figure 3.7 Pipeline stall caused by a cache miss in F2.

The effect of a cache miss on pipelined operation is illustrated in Figure 3.7. Instruction I1 is fetched

from the cache in cycle 1, and its execution proceeds normally. However, the fetch operation for

instruction I2, which is started in cycle 2, results in a cache miss. The instruction fetch unit must now

suspend any further fetch requests and wait for I2 to arrive. We assume that instruction I2 is received

and loaded into buffer Bl at the end of cycle 5. The pipeline resumes its normal operation at that point.

Data hazards: A data hazard is any condition in which either the source or the destination operands of

an instruction are not available at the time expected in the pipeline. As a result some operation has to be

delayed, and the pipeline stalls. A data hazard is a situation in which the pipeline is stalled because the

data to be operated on are delayed for some reason. Consider a program that contains two instructions,

I1 followed by I2. When this program is executed in a pipeline, the execution of 12 can begin before the

execution of I1 is completed. This means that the results generated by I1 may not be available for use by

I2. We must ensure that the results obtained when instructions are executed in a pipelined processor are

identical to those obtained when the same instructions are executed sequentially. The potential for

obtaining incorrect results when operations are performed concurrently can be demonstrated by a simple

example. Assume that A = 5, and consider the following two operations:

A ← 3 A

B ← 4 * A

When these operations are performed in the order given, the result is B == 32. But if they are performed

concurrently, the value of A used in computing B would be the original value, 5, leading to an incorrect

result. If these two operations are performed by instructions in a program, then the instructions must be

executed one after the other, because the data used in the second instruction depend on the result of the

first instruction. On the other hand, the two operations

A ← 5 x C

B ← 20 C

can be performed concurrently, because these operations are independent.

Figure 3.9 Pipeline stalled by data dependency between D2 and W1.

This example illustrates a basic constraint that must be enforced to guarantee correct results. When two

operations depend on each other, they must be performed sequentially in the correct order. This rather

obvious condition has far-reaching consequences. Understanding its implications is the key to

understanding the variety of design alternatives and trade-off's encountered in pipelined computers. For

example, the two instructions Mul R2,R3,R4 and Add RS,R4,R6 give rise to a data dependency. The

result of the multiply instruction is placed into register R4, which in turn is one of the two source

operands of the Add instruction. Assuming that the multiply operation takes one clock cycle to

complete, execution. would proceed as shown in Figure 3.9. As the Decode unit decodes the Add

instruction in cycle 3, it realizes that R4 is used as a source operand. Hence, the D step of that

instruction cannot be completed until the W step of the multiply instruction has been completed.

Completion of step D2 must be delayed to clock cycle 5, and is shown as step D2A in the figure.

Instruction h is fetched in cycle 3, but its decoding must be delayed because step D3 cannot precede D2.

Hence, pipelined execution is stalled for two cycles.

OPERAND FORWARDING: The data hazard just described arises because one instruction,

instruction I2 in Figure 3.9, is waiting for data to be written in the register file. However, these data are

available at the output of the ALU once the Execute stage completes step El. Hence, the delay can be

reduced, or possibly eliminated, if we arrange for the result of instruction I1 to be forwarded directly for

use in step E2.

Figure 3.10 Operand forwarding in a pipelined processor. Figure 3.10a shows a part of the processor

datapath involving the ALU and theregister file. This arrangement is similar to the three-bus structur,

except that registers SRCl, SRC2, and RSLT have been added. These registers constitute interstage

buffers needed for pipelined operation, as illustrated in Figure 3.10b. With reference to Figure 3.10b,

registers SRC1 and SRC2 are part of buffer B2 and RSLT is part of B3. The data forwarding

mechanism is provided by the blue connection lines. The two multiplexers connected at the inputs to the

ALU allow the data on the destination bus to be selected instead of the contents of either the SRCI or

SRC2 register. When the instructions in Figure 3.9 are executed in the datapath of Figure 3.10, the

operations performed in each clock cycle are as follows. After decoding instruction I2 and detecting the

data dependency, a decision is made to use data forwarding. The operand not involved in the

dependency, register R2, is read and loaded in register SRCI in clock cycle 3. In the next clock cycle,

the product produced by instruction I1 is available in register RSLT, and because of the forwarding

connection, it can be used in step E2. Hence, execution of I2 proceeds without interruption.

HANDLING DATA HAZARDS IN SOFTWARE: The data dependency is discovered by the

hardware while the instruction is being decoded. The control hardware delays reading register R4 until

cycle 5, thus introducing a 2-cycle stall unless operand forwarding is used. An alternative approach is

to leave the task of detecting data dependencies and dealing with them to the software. In this case, the

compiler can introduce the two-cycle delay needed between instructions I1 and I2 by inserting NOP

(No-operation) instructions, as follows:

I1: Mul R2,R3,R4

NOP

NOP

I2 : Add R5,R4,R6

If the responsibility for detecting such dependencies is left entirely to the software, the compiler must

insert the NOP instructions to obtain a correct result. This possibility illustrates the close link between

the compiler and the hardware. the compiler can attempt to reorder instructions to perform useful tasks

in the NOP slots, and thus achieve better performance. On the other hand, the insertion of NOP

instructions leads to larger code size. NOP instructions inserted to satisfy the requirements of one

implementation may not be needed and, hence, would lead to reduced performance on a different

implementation.

SIDE EFFECT

The data dependencies encountered in the preceding examples are explicit and easily detected because

the register involved is named as the destination in instruction I1 and as a source in I2. Sometimes an

instruction changes the contents of a register other than the one named as the destination. An instruction

that uses an autoincrement or autodecrement addressing mode is an example. In addition to storing new

data in its destination location, the instruction changes the contents of a source register used to access

one of its operands. All the precautions needed to handle data dependencies involving the destination

location must also be applied to the registers affected by an autoincrement or autodecrement operation.

When a location other than one explicitly named in an instruction as a destination operand is affected,

the instruction is said to have a side effect. For example, stack instructions, such as push and pop,

produce similar side effects because they implicitly use the autoincrement and autodecrement

addressing modes.

Another possible side effect involves the condition code flags, which are used by instructions such as

conditional branches and add-with-carry. Suppose that registers Rl and R2 hold a double-precision

integer number that we wish to add to another double-precision number in registers R3 and R4. This

may be accomplished as follows:

Add Rl,R3

AddWithCarry R2,R4

An implicit dependency exists between these two instructions through the carry flag. This flag is set by

the first instruction and used in the second instruction, which performs the operation.

R4 ← [R2] [R4] carry

Instructions that have side effects give rise to multiple data dependencies, which lead to a substantial

increase in the complexity of the hardware or software needed to resolve them. For this reason,

instructions designed for execution on pipe lined hardware should have few side effects. Ideally, only

the contents of the destination location, either a register or a memory location, should be affected by any

given instruction. Side effects, such as setting the condition code flags or updating the contents of an

address pointer, should be kept to a minimum.

CLASSIFICATION OF DATA DEPENDENT HAZARDS

The Data dependent hazards can be classified into three types according to various data update patterns,

Consider two instructions I1 and I2, with I1 occurring before I2 in program order.

I. Read After Write (RAW) (flow dependence hazard) (R(1) ∩ D(2) ≠ φ)

(I2 tries to read a source before I1 writes to it) A read after write (RAW) data hazard refers to a situation

where an instruction refers to a result that has not yet been calculated or retrieved. This can occur

because even though an instruction is executed after a previous instruction, the previous instruction has

not been completely processed through the pipeline. ExampleFor example:

I1. R2 <- R1 R3

I2. R4 <- R2 R3

The first instruction is calculating a value to be saved in register R2, and the second is going to use this

value to compute a result for register R4. However, in a pipeline, when we fetch the operands for the

2nd operation, the results from the first will not yet have been saved, and hence we have a data

dependency. There is a data dependency with instruction I2, as it is dependent on the completion of

instruction I1.

II. Write After Read (WAR) (Anti dependence hazard) (D(1) ∩ R(2) ≠ φ)

(I2 tries to write a destination before it is read by I1) A write after read (WAR) data hazard represents a

problem with concurrent execution. ExampleFor example: I1. R4 <- R1 R3

I2. R3 <- R1 R2

If we are in a situation that there is a chance that I2 may be completed before I1 (i.e. with concurrent

execution) we must ensure that we do not store the result of register R3 before I1 has had a chance to

fetch the operands.

III. Write After Write (WAW) (Output dependence hazard) (R(1) ∩ R(2) ≠ φ)

(I2 tries to write an operand before it is written by I1) A write after write (WAW) data hazard may

occur in a concurrent execution environment. ExampleFor example:

I1. R2 <- R4 R7

I2. R2 <- R1 R2

There must delay the WB (Write Back) of I2 until the execution of I1.

Possible hazards for various instruction types

Instruction hazards: Pipeline execution of instructions will reduce the time and improves the

performance. Whenever this stream is interrupted, the pipeline stalls, as figure 3.7 illustrates for the case

of a cache miss. A branch instruction may also cause the pipeline to stall. The effect of branch

instructions and the techniques that can be used for mitigating their impact are discussed with

unconditional branches and conditional branches.

UNCONDITIONAL BRANCHES: A sequence of instructions being executed in a two-stage pipeline

is shown in Figure 3.11. Instructions I1 to I3 are stored at successive memory addresses, and I2 is a

branch instruction. Let the branch target be instruction Ik. In clock cycle 3, the fetch operation for

instruction 13 is in progress at the same time that the branch instruction is being decoded and the target

address computed. In clock cycle 4, the processor must discard I3, which has been incorrectly fetched,

and fetch instruction Ik. In the meantime, the hardware unit responsible for the Execute (E) step must be

told to do nothing during that clock period. Thus, the pipeline is stalled for one clock cycle.

Figure 3.11 An idle cycle caused by a branch instruction.

The time lost as a result of a branch instruction is often referred to as the branch penalty (Time loss). In

Figure 3.11, the branch penalty is one clock cycle. For a longer pipeline, the branch penalty may be

higher. For examp1e, Figure 3.10a shows the effect of a branch instruction on a four stage pipeline. The

branch address is computed in step E2. Instructions I3 and I4 must be discarded, and the target

instruction, Ik, is fetched in clock cycle 5. Thus, the branch penalty is two clock cycles.

Reducing the branch penalty requires the branch address to be computed earlier in the pipeline.

Typically, the instruction fetch unit has dedicated hardware to identify a branch instruction and compute

the branch target address as quickly as possible after an instruction is fetched. With this additional

hardware, both of these tasks can be performed in step D2, leading to the sequence of events shown in

Figure 3.10b. In this case, the branch penalty is only one clock cycle.

Figure 3.10 Branch timing.

Either a cache miss or a branch instruction stalls the pipeline for one or more clock cycles. To reduce

the effect of these interruptions, many processors employ sophisticated fetch units that can fetch

instructions before they are needed and put them in a queue. Typically, the instruction queue can store

several instructions. A separate unit, which we call the dispatch unit, takes instructions from the front of

the queue and sends them to the execution unit. This leads to the organization shown in Figure 3.11.

The dispatch unit also performs the decoding function. To be effective, the fetch unit must have

sufficient decoding and processing capability to recognize and execute branch instructions. It attempts

to keep the instruction queue filled at all times to reduce the impact of occasional delays when fetching

instructions. If there is a delay in fetching instructions because of a branch or a cache miss, the dispatch

unit continues to issue instructions from the instruction queue. The fetch unit continues to fetch

instructions and add them to the queue.

Figure 3.11 Use of instruction queue in hardware organization.

To be effective, the fetch unit must have sufficient decoding and processing capability to recognize and

execute branch instructions. It attempts to keep the instruction queue filled at all times to reduce the

impact of occasional delays when fetching instructions. If there is a delay in fetching instructions

because of a branch or a cache miss, the dispatch unit continues to issue instructions from the

instruction queue. The fetch unit continues to fetch instructions and add them to the queue.

Influence on Instruction Sets: Some instructions are much better suited to pipelined execution than

other instructions. For example, instruction side effects can lead to undesirable data dependencies. The

machine instructions are influenced by addressing modes and condition code flags.

I. Addressing modes: Addressing modes should provide the means for accessing a variety of data

structures simply and efficiently. Useful addressing modes include index, indirect, autoincrement, and

autodecrement. Many processors provide various combinations of these modes to increase the flexibility

of their instruction sets. Complex addressing modes, such as those involving double indexing, are often

encountered.

Two important considerations in this regard are the side effects of addressing modes such as

autoincrement and autodecrement and the extent to which complex addressing modes cause the pipeline

to stall. Another important factor is whether a given mode is likely to be used by compilers.

Figure 3.17 Equivalent operations using complex and simple addressing mode.

Assume a simple model for accessing operands in the memory. The load instruction Load X(RI),R2

takes five cycles to complete execution, However, the instruction Load (Rl),R2 can be organized to fit a

four-stage pipeline because no address computation is required. Access to memory can take place in

stage E. A more complex addressing mode may require several accesses to the memory to reach the

named operand.

For example, the instruction Load (X(Rl)),R2

It may be executed as shown in Figure 3.17a, assuming that the index offset, X, is given in the

instruction, word. Mter computing the address in cycle 3, the processor needs to access memory twice -

first to read location X [Rl] in clock cycle 4 and then to read location [X [Rl]] in cycle 5. If R2 is a

source operand in the next instruction, that instruction would be stalled for three cycles, which can be

reduced to two cycles with operand forwarding, as shown in figure 3.17. To implement the same Load

operation using only simple addressing modes requires several instructions. For example, on a computer

that allows three operand addresses like

Add #X,Rl,R2

Load (R2),R2

Load (R2),R2

The Add instruction performs the operation R2 ← X [RI], The two Load instructions fetch the address

and then the operand from the memory. This sequence of instructions takes exactly the same number of

clock cycles as the original, single Load instruction, as shown in Figure 3.17b.

This example indicates that, in a pipelined processor, complex addressing modes that involve several

accesses to the memory do not necessarily lead to faster execution. The main advantage of such modes

is that they reduce the number of instructions needed to perform a given task and thereby reduce the

program space needed in the main memory. Their main disadvantage is that their long execution times

cause the pipeline to stall, thus reducing its effectiveness. They require more complex hardware to

decode and execute them. Also, they are not convenient for compilers to work with.

The instruction sets of modem processors are designed to take maximum advantage of pipelined

hardware. The addressing modes used in modem processors often have the following features:

 Access to an operand does not require more than one access to the memory.

 Only load and store instructions access memory operands.

 The addressing modes used do not have side effects.

Three basic addressing modes that have these features are register, register indirect, and index. The first

two require no address computation. In the index mode, the address can be computed in one cycle,

whether the index value is given in the instruction or in a register. Memory is accessed in the following

cycle. None of these modes has any side effects, with one possible exception. Some architecture, such

as ARM, allow the address computed in the index mode to be written back into the index register. This

is a side effect that would not be allowed under the guidelines above.

II. Condition modes

In many processors, the condition code flags are stored in the processor status register. They are either

set or cleared by many instructions, so that they can be tested by subsequent conditional branch

instructions to change the flow of program execution. An optimizing compiler for a pipelined processor

attempts to reorder instructions to avoid stalling the pipeline when branches or data dependencies

between successive instructions occur. In doing so, the compiler must ensure that reordering does not

cause a change in the outcome of a computation. The dependency introduced by the condition-code

flags reduces the flexibility available for the compiler to reorder instructions. Consider the sequence of

instructions

Add Rl,R2

Compare R3,R4

Branch=0 …

Assume that the execution of the Compare and Branch = 0 instructions proceeds as in Figure 3.14. The

branch decision takes place in step E3 rather than D2 because it must await the result of the Compare

instruction. The execution time of the Branch instruction can be reduced by interchanging the Add

and Compare instructions,

Compare R3,R4

Add Rl,R2

Branch=0 …

This will delay the branch instruction by one cycle relative to the Compare instruction. As a result, at

the time the Branch instruction-'is being decoded the result of the Compare instruction will be available

and a correct branch decision will be made. There would be no need for branch prediction. However,

interchanging the Add and Compare instructions can be done only if the Add instruction does not affect

the condition codes.

These observations lead to two important conclusions about the way condition codes should be handled.

First, to provide flexibility in reordering instructions, the condition-code flags should be affected by as

few instructions as possible. Second, the compiler should be able to specify in which instructions of a

program the condition codes are affected and in which they are not.

Datapath and control considerations: Consider the three-bus structure suitable for pipelined execution

with a slight modification to support a 4-stage pipeline as shown in figure 3.18.

Figure 3.18 Datapath modified for pipelined execution with interstage buffers at the input and

output of the ALU.

Several important changes are

1. There are separate instruction and data caches that use separate address and data connections to

the processor. This requires two versions of the MAR register, IMAR for accessing tile

instruction cache and DMAR for accessing the data cache.

2. The PC is connected directly to the IMAR, so that the contents of the PC can be transferred to

IMAR at the same time that an independent ALU operation is taking place.

3. The data address in DMAR can be obtained directly from the register file or from the ALU to

support the register indirect and indexed addressing modes.

4. Separate MDR registers are provided for read and write operations. Data can be transferred

directly between these registers and the register file during load and store operations without the

need to pass through the ALU.

5. Buffer registers have been introduced at the inputs and output of the ALU. These are registers

SRCl, SRC2, and RSLT. Forwarding connections may be added if desired.

6. The instruction register has been replaced with an instruction queue, which is loaded from the

instruction cache.

7. The output of the instruction decoder is connected to the control signal pipeline. This pipeline

holds the control signals in buffers B2 and B3 in Figure 3.3.

The following operations can be performed independently in the processor of Figure 3.18:

• Reading an instruction from the instruction cache

• Incrementing the PC

• Decoding an instruction

• Reading from or writing into the data cache

• Reading the contents of up to two registers from the register file

• Writing into one register in the register file

• Performing an ALU operation

The processor execution time T, of a program that has a dynamic instruction count N is given by

Where S is the average number of clock cycles it takes to fetch and execute one instruction and R is the

clock rate. This simple model assumes that instructions are executed one after the other, with no

overlap. A useful performance indicator is the instruction throughput, which is the number of

instructions executed per second. For sequential execution, the throughput, Ps is given by

In general, an n-stage pipeline has the potential to increase throughput n times. Thus, it would appear

that the higher the value of n, the larger the performances gain. Any time a pipeline is stalled, the

instruction throughput is reduced. Hence, the performance of a pipeline is highly influenced by factors

such as branch and cache miss penalties.

I. SUPERSCALAR OPERATION: Pipelining makes it possible to execute instructions concurrently.

Several instructions are present in the pipeline at the same time, but they are in different stages of their

execution. While one instruction is performing an ALU operation, another instruction is being decoded

and yet another is being fetched from the memory. Instructions enter the pipeline in strict program

order. In the absence of hazards, one instruction enters the pipeline and one instruction completes

execution in each clock cycle. This means that the maximum throughput of a pipelined processor is one

instruction per clock cycle.

A more aggressive approach is to equip the processor with multiple processing units to handle several

instructions in parallel in each processing stage. With this arrangement, several instructions start

execution in the same clock cycle, and the processor is said to use multiple-issue. Such processors are

capable of achieving an instruction execution throughput of more than one instruction per cycle. They

are known as superscalar processors. Many modem high-performance processors use this approach.

The instruction queue filled is introduced, so that a processor should be able to fetch more than one

instruction at a time from the cache. For superscalar operation, this arrangement is essential. Multiple-

issue operation requires a wider path to the cache and multiple execution units. Separate execution units

are provided for integer and floating-point instructions.

Figure 3.19 A Processor with two execution units

Figure 8.19 shows an example of a processor with two execution units, one for integer and one for

floating-point operations. The Instruction fetch unit is capable of reading two instructions at a time and

storing them in the instruction queue. In each clock cycle, the Dispatch unit retrieves and decodes up to

two instructions from the front of the queue. If there is one integer, one floatingpoint instruction, and no

hazards, both instructions are dispatched in the same clock cycle.

In a superscalar processor, the detrimental effect on performance of various hazards becomes even more

pronounced. The compiler can avoid many hazards through judicious selection and ordering of

instructions. For example, for the processor in Figure 3.19, the compiler should strive to interleave

floating-point and integer instructions. This would enable the dispatch unit to keep both the integer and

floating-point units busy most of the time. In general, high performance is achieved if the compiler is

able to arrange program instructions to take maximum advantage of the available hardware units.

Figure 3.20 An Example of instruction flow in the Processor with assuming no hazards

Pipeline timing is shown in Figure 8.20. The blue shading indicates operations in the floating-point unit.

The floating-point unit takes three clock cycles to complete the floating-point operation specified in I1.

The integer unit completes execution of I2 in one clock cycle. We have also assumed that the floating-

point unit is organized internally as a three-stage pipeline. Thus, it can still accept a new instruction in

each clock cycle. Hence, instructions I3 and I4 enter the dispatch unit in cycle 3, and both are

dispatched in cycle 4. The integer unit can receive a new instruction because instruction I2 has

proceeded to the Write stage. Instruction I1 is still in the execution phase, but it has moved to the

second stage of the internal pipeline in the floating-point unit. Therefore, instruction I3 can enter the

first stage. Assuming that no hazards are encountered, the instructions complete execution as shown.

OUT-OF-ORDER EXECUTION: In Figure 8.20, instructions are dispatched in the same order as they

appear in the program. However, their execution is completed out of order. Suppose one issue arise

from dependencies among instructions. For example, if instruction I2 depends on the result of I1, the

execution of I2 will be delayed. As long as such dependencies are handled correctly, there is no reason

to delay the execution of an instruction. However, a new complication arises when we consider the

possibility of an instruction causing an exception. Exceptions may be caused by a bus error during an

operand fetch or by an illegal operation, such as an attempt to divide by zero. The results of I2 are

written back into the register file in cycle 4. If instruction I1 causes an exception, program execution is

in an inconsistent state. The program counter points to the instruction in which the exception occurred.

However, one or more of the succeeding instructions have been executed to completion. If such a

situation is permitted, the processor is said to have imprecise exceptions.

To guarantee a consistent state when exceptions occur, the results of the execution of instructions must

be written into the destination locations strictly in program order. This means we must delay step W2 in

Figure 8.20 until cycle 6. In turn, the integer execution unit must retain the result of instruction I2, and

hence it cannot accept instruction I4 until cycle 6, as shown in Figure 8.2Ia. If an exception occurs

during an instruction, all subsequent instructions that may have been partially executed are discarded.

This is called a precise exception.

It is easier to provide precise exceptions in the case of external interrupts. When an external interrupt is

received, the Dispatch unit stops reading new instructions from the instruction queue and the

instructions remaining in the queue are discarded. All instructions whose execution is pending continue

to completion. At this point, the processor and all its registers are in a consistent state, and interrupt

processing can begin.

UltraSPARC Architecture belongs to the SPARC (Scalable Processor Architecture) family of

processors. This architecture is suitable for wide range of microcomputers and supercomputers.

UltraSPARC is example of RISC (Reduced Instruction Set Computer).

UltraSPARC architecture:

1. Memory:

Memory consists of 8 bit-bytes. Two consecutive bytes form a halfword, four bytes form a word,

eight bytes form a doubleword. UltraSPARC programs operates on Virtual Address

Space (264 bytes). Virtual Address Space is divided into pages and these pages are stored in the

physical memory or on disk.

2. Registers:

UltraSPARC architecture include a large file of registers that have more than 100 general purpose

registers. Any procedure can access only 32 registers only. The SPARC hardware uses window

into registers file to manage all the operations of different procedures.

Beside these register files, UltraSPARC also uses Program Counter, code register, and other

control registers.

1. Data Formats:
 Integers are stored as 8-, 16-, 32-, or 64-bit Binary numbers.

 Characters are represented using 8-bit ASCII codes.

 Floating points are represented using three different formats namely single-percision format,

double-percision format, quad-percision format.

2. Instruction Formats:

SPARC architecture use three basic instruction formats. All the instructions are of 32-bit long and

first two bits are used to identify which format is being used.

Format 1- Used for Call instruction.

Format 2- Used for branch instructions.

Format 3- Used by all the remaining instructions like register load and store.

1. Where,

2. n=Indirect mode,

3. i=Immediate addressing,

4. x=Index addressing,

5. b=Base addressing,

6. p= Program counter,

e=Exponential addressing

7. Addressing Modes:
Operands in memory are addressed using one of the following three modes:

8. Mode Target address(TA) calculation
9. PC-relative TA=(PC) + displacement

10.
11. Register indirect TA=(register) + displacement

12. with displacement

13.
14. Register indirect TA=(register-1) + (register-2)

15. indexed

PC-relative is used only for branch instructions.

16. Instruction Set:

This architecture have less number of instructions as compared to CISC machines. The only

instructins that access memory are load and stores. All other instructions operates on register only.

Instruction execution on a SPARC system is pipelined which means while one instruction is

executed next one is being fetched from memory and decoded.

17. Input and Output:

Communication between I/O devices and SPARC operation are accomplished through memory.

Input and Output can be performed with the regular instruction set of the computer, and no special

I/O instructions are needed.

KMMIPS::MCA Prepared by C.Yamini (ASST.PROF)

KMMIPS::MCA Prepared by C.Yamini (ASST.PROF)

KMMIPS::MCA Prepared by C.Yamini (ASST.PROF)

	10.Logic Gates:
	AND GATE:
	OR GATE:
	NOT GATE:
	NAND GATE:
	NOR GATE:
	Exclusive-OR/ XOR GATE:
	EXCLUSIVE-NOR/Equivalence GATE:

	Boolean algebra
	11.Examples of Boolean algebra simplifications using logic gates
	12.Laws of Boolean algebra
	SOP FORM
	POS FORM
	16.Flip Flops
	Latches vs Flip-Flops
	Types of flip flops
	S-R Flip Flop
	Truth Table of SR Flip Flop
	Working

	D flip flop
	Truth table
	Working

	J-K Flip Flop
	Truth Table
	Working

	T Flip Flop
	Truth Table
	Working

	WHERE WE USE FLIP FLOPS??
	Serial-In Serial-Out Shift Register (SISO) –
	Serial-In Parallel-Out shift Register (SIPO) –
	Parallel-In Serial-Out Shift Register (PISO) –
	Parallel-In Parallel-Out Shift Register (PIPO) –
	Bidirectional Shift Register –
	Shift Register Counter –
	Applications of shift Registers –

	21.Programmable Logic Devices
	Types of Programmable Logic Devices
	Programmable Logic Array (PLA)
	Programmable Array Logic (PAL)
	Generic Logic Array (GLA)
	Complex Programmable Logic Device (CPLD)
	Byte Addressability
	Big-Endian and Little-Endian Assignments in Byte Addresses
	Word Alignment

	Memory Operations
	Serial port
	10.I/O device
	11.Processors
	Unit-4
	SOME FUNDAMENTAL CONCEPTS
	SINGLE BUS ORGANIZATION
	REGISTER TRANSFERS
	Input & Output Gating for one Register Bit
	PERFORMING AN ARITHMETIC OR LOGIC OPERATION
	FETCHING A WORD FROM MEMORY
	Storing a Word in Memory
	EXECUTION OF A COMPLETE INSTRUCTION
	BRANCHING INSTRUCTIONS
	MULTIPLE BUS ORGANIZATION
	Note:
	HARDWIRED CONTROL
	COMPLETE PROCESSOR
	MICROPROGRAMMED CONTROL
	ORGANIZATION OF MICROPROGRAMMED CONTROL UNIT (TO SUPPORT CONDITIONAL BRANCHING)
	MICROINSTRUCTIONS
	Microinstruction
	BRANCH ADDRESS MODIFICATION USING BIT-ORING
	WIDE BRANCH ADDRESSING
	Use of WMFC

