
What is Java SE?

The SE stands for Java Standard Edition is a computing platform in which we can execute software,

and it can be used for development and deployment of portable code for desktop and server

environments. It has the Java programming language in use. It is part of Java software-platform family.

Java SE has a variety of general purpose APIs and the Java Class Library. It is the core Java

programming platform and provides all the libraries and APIs such as java.lang, java.io, java.math,

java.net, java.util etc.

The following are the few APIs which Java SE has -

Applet- An applet is a small application, especially a utility program performing one or a few
simple functions. This API provides the classes necessary to create an applet. The applet
framework contains two entities. One is applet and the other is applet context. The applet is an
embeddable window with a few extra methods which the applet context uses to initialize, start
and stop the applet.

AWT- AWT stands for Abstract window toolkit. This package contains all the classes for
creating a user interface and for painting graphics and images. Any UI object like button and
scrollbar is called as a component.

RMI- RMI stands for Remote Method Invocation enables the programmer to create distributed
Java technology-based to Java technology-based application. RMI uses object serialization to
marshal and unmarshal parameters and does not shorten types.

JDBC- It stands for Java Database Connectivity. It allows you to fetch data from any data source
be its relational database, be it a spreadsheet, be it flat file.

Swing- Swing provides a set of 'lightweight' components mainly used for graphical user
interface enhancement. All swing components and related classes should be accessed on the
dispatching thread.

Collections- Collection refers to a group of objects, known as its elements. There are many
methods in the collections Framework interface which depend on the equals method. For
example- the contains(Object o) method says that it will return true if the collection contains an
element which satisfies the condition that (o==null ? e==null: o.equals(e))

xml binding- It provides a run-time binding framework for client-side user application
allowing the user to Marshall, unmarshal, and validation capabilities. JAXBContext is the client-
entry point to the runtime binding framework.

JavaFX (Merged to Java SE 8)- This contains several packages within it like
javafx.animation(provides set of classes for ease of animation), javafx.application(provides set of
classes for application life-cycle classes ) and javafx.beans() etc.

Java 8 Collections Streaming API- It contains classes to support functional-style operations
on streams of elements. Such as map-reduce transformation on collections. Stream operations



are divided into two parts namely intermediate and terminal operations which are combined
together to form pipelines.

Java 9 Reactive Streams API- Reactive Stream initiative was taken by giants like Netflix in
order to standardize the asynchronous exchange of data within an application. They are a part
of JDK in the form of java.util.concurrent.Flow.interfaces.

Java 9 HTTP/2 API- This API solved various problems which were with the previous HTTP/1.1
API. Previously we cannot have more than 6 connections at a time. This made it complex as
other requests had to wait till previous calls get sorted. This got sorted with this API.

Java SE significant features

Java SE has all the basic types and objects of the Java programming language.

Java SE provides high-level classes used for networking, security, database access, GUI
(Graphical User Interface) development, and XML parsing.

It now provides static members inside interfaces.

It provides with ForEach() method which can iterate through contiguous memory allocations
and allows you to use it without knowing its size.

It provides the Collectors class which allows accumulating elements into collections,
summarizing data according to various criteria.

It provides with the stream API which allows lazy computation (through this you can initialize
only if they are required) and functional-style programming.

It provides a class Base64 for encryption and decryption.

Performance has been improvement for the java.lang.String(byte[], *) constructor and the
java.lang.String.getBytes() method.

A new class java.net.URLPermission has been added. It represents permission for accessing a
resource defined by a given URL.

It provides a single abstract method interface.

How to set up Java SE on windows

To develop or run Java applications, you need to download and install the Java SE Development Kit.

Step 1.) Download the Java SE latest release from the official site of Oracle.



Step 2.) After downloading the file, you will have an executable file downloaded. Run that file and

keep everything as default and keep clicking next.

Step 3.) After completing the installation, your JDK and JRE would be downloaded in the program files

folder.

Step 4.) After complete installation, you need to set up the environment variables.

Step 5.) Go to control panel -> System and Security -> System -> Advanced System Settings. The

following dialog box will appear.



Step 6.) Click on Environment Variables, go to system variables, and double click on Path.



Step 7.) Now add the path of your bin file present in the JDK file to the Path variable.



The set up Java environment is complete.

For development, you can use any IDE such as IntelliJ IDEA, Eclipse or NetBeans. Eclipse and NetBeans

are free but IDEs but IntelliJ IDEA is paid IDE.



← Prev Next →

Java SE vs Java EE

Java EE refers to Java Enterprise Edition. It is a wrapper around the Java SE providing features for

distributed computing, web services, reading and writing from a database in a transactional way. Java

EE is a wrapper around Java SE providing certain additional functionalities and features along with

that of Java SE.

Java SE Java EE

Java SE provide basic functionalities such as

defining types and objects.

Java EE provides APIs for running large scale

applications.

SE is a standard Java specification EE is built upon Java SE. It provides

functionalities like web applications, servlets,

etc.

It consists of class libraries, virtual machines,

deployment environment programming.

Java EE is a structured application with a

separate client, business, and Enterprise layers.

It is mostly used to develop APIs for Desktop

Applications like antivirus software, game, etc.

It is mainly used for developing web

applications.

It is suitable for beginning Java developers. It is suitable for experienced Java developers

who build enterprise-wide applications.

User authentication functionality is not provided

with Java SE.

User authentication is provided by Java EE.

Future of Java SE

Java SE seems to be losing its charm as it does not provides many useful functionalities and is used

for only basic features of Java programming language. The ongoing trend shows decreasing use of

Java SE, and more people use other programming platforms such as Java EE, Java ME, and Python.

Java SE has come up with features such as Application data-class Sharing, parallel full GC, garbage

collector interface, local variable type interface which makes it stand strong with other programming

platforms but still it is not up to the mark. Java is currently focusing on data management and

machine learning ecosystems.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial


Java EE

The Java EE stands for Java Enterprise Edition, which was earlier known as J2EE and is currently

known as Jakarta EE. It is a set of specifications wrapping around Java SE (Standard Edition). The Java

EE provides a platform for developers with enterprise features such as distributed computing and web

services. Java EE applications are usually run on reference run times such as microservers or

application servers. Examples of some contexts where Java EE is used are e-commerce, accounting,

banking information systems.

Specifications of Java EE

Java EE has several specifications which are useful in making web pages, reading and writing from

database in a transactional way, managing distributed queues. The Java EE contains several APIs which

have the functionalities of base Java SE APIs such as Enterprise JavaBeans, connectors, Servlets, Java

Server Pages and several web service technologies.

1. Web Specifications of Java EE

Servlet- This specification defines how you can manage HTTP requests either in a synchronous
or asynchronous way. It is low level, and other specifications depend on it

WebSocket- WebSocket is a computer communication protocol, and this API provides a set of
APIs to facilitate WebSocket connections.

Java Server Faces- It is a service which helps in building GUI out of components.

Unified Expression Language- It is a simple language which was designed to facilitate web
application developers.



2. Web Service Specifications of Java EE

Java API for RESTful Web Services- It helps in providing services having Representational State
Transfer schema.

Java API for JSON Processing- It is a set of specifications to manage the information provided
in JSON format.

Java API for JSON Binding- It is a set of specifications provide for binding or parsing a JSON file
into Java classes.

Java Architecture for XML Binding- It allows binding of xml into Java objects.

Java API for XML Web Services- SOAP is an xml based protocol to access web services over
http. This API allows you to create SOAP web services.

3. Enterprise Specifications of Java EE

Contexts and Dependency Injection- It provides a container to inject dependencies as in Swing.

Enterprise JavaBean- It is a set of lightweight APIs that an object container possesses in order
to provide transactions, remote procedure calls, and concurrency control.

Java Persistence API- These are the specifications of object-relational mapping between
relational database tables and Java classes.

Java Transaction API- It contains the interfaces and annotations to establish interaction
between transaction support offered by Java EE. The APIs in this abstract from low-level details
and the interfaces are also considered low-level.

Java Message Service- It provides a common way to Java program to create, send and read
enterprise messaging system's messages.

4. Other Specifications of Java EE

Validation- This package contains various interfaces and annotations for declarative validation
support offered by Bean Validation API.

Batch applications- It provides the means to run long running background tasks which involve
a large volume of data and which need to be periodically executed.

Java EE Connector Architecture- This is a Java-based technological solution for connecting Java
servers to Enterprise Information System.



Setting up Java EE

Requirements

For the installation of latest SDK of Java EE which is Java EE 6 SDK on windows, you require to have a

minimum memory of 1GB, minimum Disk space of 250MB free and JVM Java SE 6. For setting up Java

EE, you require to have a JDK and then have an IDE preferably Eclipse as it is free.

Install a Java Development Kit

1. Browse to Oracle's Java SE Development Kit downloads

2. In the section titled Java SE Development Kit 9.0.1, read the license and, if you agree, click
Accept License Agreement

3. Still, in that section, click on JDK-9.0.1_windows-x64_bin.exe (or the right download for your
OS)

4. Run the downloaded JDK installer, using Run As Administrator

5. Add the Windows (or Linux) Environment Variable JAVA_HOME. Set it to the root folder of your
newly-installed JDK, which looks like C:\Program Files\Java\jdk1.8.0_51.

Install Eclipse for Java EE

1. Browse to Eclipse Downloads

2. Click on the Download button under Get Eclipse.

3. On the resulting page, click on the Download button.

Note: The version of Eclipse (32-bit or 64-bit) which you download should match the version of your

JDK. You installed JDK-9.0.1_windows-x64 above, so download the 64-bit Eclipse.

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.eclipse.org/downloads/


← Prev Next →

4. Run the downloaded installer using Run as Administrator.

5. Choose the version of Eclipse you wish to install. Eclipse IDE for Java EE developers is preferable

for Java work.

6. If the installation fails, try again with real-time virus scanning temporarily turned off. Remember to

turn it on again when it's done.

Java SE vs Java EE

Java SE refers to standard edition and contains basic functionalities and packages required by a

beginner or intermediate-level programmer. Java EE is an enhanced platform and a wrapper around

Java SE. It has the edge over Java SE an also has a variety of aspects in which it outshines other

features.

Java SE Java EE

Java SE provide basic functionalities such as

defining types and objects.

Java EE facilitates development of large scale

applications.

SE is a normal Java specification EE is built upon Java SE. It provides

functionalities like web applications, and

Servlets.

It has features like class libraries, deployment

environments, etc.

Java EE is a structured application with a

separate client, business, and Enterprise layers.

It is mostly used to develop APIs for Desktop

Applications like antivirus software, game, etc.

It is mainly used for developing web

applications.

Suitable for beginning Java developers. Suitable for experienced Java developers who

build enterprise-wide applications.

It does not provide user authentication. It provides user authentication.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial


What is Java ME?

The Java ME stands for Java Micro Edition. It is a development and deployment platform of portable

code for embedded and mobile devices (sensors, gateways, mobile phones, printers, TV set-top

boxes). It is based on object-oriented Java. The Java ME has a robust user interface, great security,

built-in network protocols, and support for applications that can be downloaded dynamically.

Applications which are developed on Java ME are portable and can run across various devices and can

also leverage the native capabilities of the device.

Java ME SDK

Java ME Software Development Kit (SDK) provides the standalone runtime environment and various

utilities required for development Java ME applications. It combines the Connected Limited Device

Configuration (CLDC) and the Connected Device Configuration (CDC) into one single

environment.

Java ME Embedded

Java ME embedded is a run time platform that leverages the Java ME technologies that are deployed

to billions of devices across the Internet of Things. It is designed by keeping in mind that the

applications developed can be portable to various devices while being resource-efficient and keeping

the demands from the underlying platform low.

How Java ME is organized

The generic computing devices usually consist of hardware such as display, permanent storage,

keyboard, etc. but the small computing devices are not like this. Some of them don't have permanent

storage, and some don't even have a permanent display. As Java ME target a variety of small

computing devices, this problem is handled by it by using a two-fold approach.



Firstly, there is a Java Run-time Environment and other core classes that are defined to target
specifically the device on which it is operating. This is referred to as configurations.

Secondly, a profile is defined as a set of similar small computing devices. A profile has several
classes within it which are made to implement features found on a related group of small
computing devices.

Java ME architecture

The Java ME architecture helps in scaling an application based on the constraints provided by the

small computing device. Java ME does not simply replace the operating system, rather it stacks up

layers on the native operating system and makes an environment for the application to run. These

layers are collectively named as Connected Limited Device Configuration (CLDC).

The first layer is the configuration layer that includes the Java Virtual Machine. This layer interacts

directly with the native operating system and builds the connection between the profile and the JVM.

The second layer is the profile which contains the minimum set of APIs for the small computing

device. The profile contains a set of classes which are made to implement the features of a related

group of small computing devices.

The third layer is the Mobile Information Device Profile (MIDP). The MIDP layer consists of APIs

which are for user network connections, persistence storage, and the user interface. It also has access

to Connected Language Device Configuration (CLDC) and Mobile Information Device Profile (MIDP)

libraries.

A small computing device has two components supplied by the Original Equipment Manufacturer

(OEM). They are, namely OEM apps and OEM classes. The MIDP communicates with the OEM classes

to gain access to features like sending and receiving messages and accessing device-specific

persistent data. OEM applications are small programs such as address book etc.

NOTE: Dependency of MIDP on OEM apps and OEM classes makes the application less portable

as OEM feature are different for all manufacturers, and not all of them use the same classes and

apps.



Java ME Configurations

Java ME configurations specify a JVM and certain core APIs which are directed towards a certain set of

devices. There are two configurations available with Java ME, namely Connected Device Configuration

(CDC) and Connected Limited Device Configuration. The Java ME configurations and profiles are

based on memory and for small devices based on volatile and non-volatile memory.

Java ME vs. Java EE

Java ME Java EE

Java ME facilitates the development of applications for

small computing devices such as embedded systems,

sensors, etc.

Java EE facilitates development of

large scale applications.

Java ME is built upon Java SE. Provides functionalities such

as networking, communication with native operating

systems of mobile devices

EE is also built upon Java SE. It

provides functionalities like web

applications, servlets, etc.

It has features which make applications portable and which

can run on various devices. It deals with many constraints,

such as a small battery, small display, etc.

Java EE is a structured application

with a separate client, business, and

Enterprise layers.

It is mostly used to develop mobile applications. It is mainly used for developing web

applications.

It is suitable for developers targeting diversified operating

systems and a variety of devices.

It is suitable for experienced Java

developers who build enterprise-

wide applications.

It does not provide user authentication. It provides user authentication.


