
UNIT-II

1.Discuss about packages in Java.

A package is Java's style of bundling classes together. A package is a collection of related

classes and interfaces. A package does not mean only predefined classes; a package may

contain user defined classes also. A package is equivalent to a header file of C-lang. Packages

can be compressed into JAR files for fast traversal in a network or to download from Internet.

ADVANTAGES OF PACKAGES

 Like header files, packages come with many advantages.

 With a single import statement, all the classes and interfaces can be obtained into our

program.

 Unlike a header file, Java permits to import even a single class also.

 Avoids namespace problems. Two classes of the same name cannot be put in the same

package but can be placed in two different packages.

 Access between the classes can be controlled. Using packages, restrictions can be

imposed on the access of other package classes. Access specifiers work on package

boundaries (between the classes of other packages).

 We can find all the related classes and interfaces in a single space. Searching and

identification will be easier.

 Packages and sub-packages are the easiest way to organize the classes.

To access the package from outside the package.(using import keyword)

 import package.*;

 import package.classname; fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible but not

subpackages. The import keyword is used to make the classes and interface of another package

accessible to the current package.

2.Using packagename.classname

If you import package.classname then only declared class of this package will be accessible.

Subpackage in java Package inside the package is called the subpackage. It should be created to

categorize the package further.

 Import mainpackage.subpackage.*; to access all classes in subpackage.

 Import mainpackage.subpackage.Classname; to access specific class in subpackage.

System Predefined packages in Java

Java provides various predefined classes and interfaces (API’s) organized under packages. These

are known as predefined packages, following is the list of predefined packages in java −

 java.lang − This package provides the language basics.

 java.util − This packages provides classes and interfaces (API’s) related to collection

frame work, events, data structure and other utility classes such as date.

 java.io − This packages provides classes and interfaces for file operations, and other

input and output operations.

 java.math − This packages provides classes and interfaces for multiprecision arithmetics.

 java.nio − This packages provides classes and interfaces the Non-blocking I/O framework

for Java

 java.net − This packages provides classes and interfaces related to networking.

 java.security − This packages provides classes and interfaces such as key generation,

encryption and decryption which belongs to security frame work.

 java.sql − This packages provides classes and interfaces for accessing/manipulating the

data stored in databases and data sources.

 java.awt − This packages provides classes and interfaces to create GUI components in

Java.

 java.text − This packages provides classes and interfaces to handle text, dates, numbers,

and messages.

 java.rmi − Provides the RMI package.

 java.time − The main API for dates, times, instants, and durations.

 java.beans − The java.beans package contains classes and interfaces related to

JavaBeans components.

2. How to create used defined package in Java.

Creating a package

You can create a package and add required classes/interfaces in it just by declaring the package

on the top of the Class/Interface files using the keyword package as –

package package_name;

To compile this program (programs with packages), you need to use the –d option of the javac

command. At this you need to specify the path where you need to create the package.

javac -d E:\ Simple.java

//save as Simple.java

package mypack; user defined package name

public class Simple{

 public static void main(String args[]){

 System.out.println("Welcome to package");

 }

}

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where

the class file resides.

e:\sources> set classpath=c:\classes;.;

e:\sources> java mypack.Simple

2. write about Access Modifiers in Java

 Private access modifier

 Role of private constructor

 Default access modifier

 Protected access modifier

 Public access modifier

 Access Modifier with Method Overriding

There are two types of modifiers in Java: access modifiers and non-access modifiers.

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor,

or class. We can change the access level of fields, constructors, methods, and class by applying

the access modifier on it.

There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be

accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot

be accessed from outside the package. If you do not specify any access level, it will

be the default.

3. Protected: The access level of a protected modifier is within the package and

outside the package through child class. If you do not make the child class, it cannot

be accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from

within the class, outside the class, within the package and outside the package.

5. 's understand the access modifiers in Java by a simple table.

Access Modifier within class within package outside package by

subclass only

outside

package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

3. What is an Exception and give types of exceptions.

An exception (or exceptional event) is a problem that arises during the execution of a program.

When an Exception occurs the normal flow of the program is disrupted and the

program/Application terminates abnormally, which is not recommended, therefore, these

exceptions are to be handled.

An exception can occur for many different reasons. Following are some scenarios where an

exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has run

out of memory.

Based on these, we have three categories of Exceptions.

Checked exceptions − A checked exception is an exception that is checked (notified) by the

compiler at compilation-time, these are also called as compile time exceptions. These exceptions

cannot simply be ignored, the programmer should take care of (handle) these exceptions.

import java.io.File;

import java.io.FileReader;

public class FilenotFound_Demo {

 public static void main(String args[]) {

 File file = new File("E://file.txt");

 FileReader fr = new FileReader(file);

 }

}

In above code FileReader class throws FileNotFound exception it should be handled and checked

by compiler.

Unchecked exceptions − An unchecked exception is an exception that occurs at the time of

execution. These are also called as Runtime Exceptions. These include programming bugs, such

as logic errors or improper use of an API. Runtime exceptions are ignored at the time of

compilation.
public class Unchecked_Demo {

 public static void main(String args[]) {

 int num[] = {1, 2, 3, 4};

 System.out.println(num[5]);

 }

}

 Here array size in not checked by compiler and hence error is occurs at runtime.

Errors − These are not exceptions at all, but problems that arise beyond the control of the user

or the programmer. Errors are typically ignored in your code because you can rarely do anything

about an error. For example, if a stack overflow occurs, an error will arise. They are also ignored

at the time of compilation.

4.Exception Hierarchy

All exception classes are subtypes of the java.lang.Exception class. The exception class is a

subclass of the Throwable class. Other than the exception class there is another subclass called

Error which is derived from the Throwable class.

Errors are abnormal conditions that happen in case of severe failures, these are not handled by

the Java programs. Errors are generated to indicate errors generated by the runtime environment.

Example: JVM is out of memory. Normally, programs cannot recover from errors.

5. Java Exception Keywords

There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try The "try" keyword is used to specify a block where we should place exception

code. The try block must be followed by either catch or finally. It means, we

can't use try block alone.

catch The "catch" block is used to handle the exception. It must be preceded by try

block which means we can't use catch block alone. It can be followed by finally

block later.

finally The "finally" block is used to execute the important code of the program. It is

executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It doesn't throw an

exception. It specifies that there may occur an exception in the method. It is

always used with method signature.

6 Exception Class Methods

Exceptions Methods

Sr.No. Method & Description

1
public String getMessage()

Returns a detailed message about the exception that has occurred. This message is
initialized in the Throwable constructor.

2
public Throwable getCause()

Returns the cause of the exception as represented by a Throwable object.

3
public String toString()

Returns the name of the class concatenated with the result of getMessage().

4
public void printStackTrace()

Prints the result of toString() along with the stack trace to System.err, the error output
stream.

7.Exception handling Mechanism in Java.

In Java an exception handling is done using a combination of the try and catch keywords. A
try/catch block is placed around the code that might generate an exception.
 Java catch block is used to handle the Exception by declaring the type of exception within the
parameter. The declared exception must be the parent class exception (i.e., Exception) or the
generated exception type. However, the good approach is to declare the generated type of
exception.
 Code within a try/catch block is referred to as protected code, and the syntax for using
try/catch looks like the following –

Syntax

try {

 // Protected code

// that cause or raise exceptions

}

catch (ExceptionName e1)

 {

 // Catch block

}

Example:-

public class JavaExceptionExample{

 public static void main(String args[]){

 try{

 //code that may raise exception

 int data=100/0;

 }catch(ArithmeticException e){System.out.println(e);}

 //rest code of the program

 System.out.println("rest of the code...");

 }

}

Exception Examples:

int a=50/0;//ArithmeticException

String s=null;

System.out.println(s.length());//NullPointerException

String s="abc";

int i=Integer.parseInt(s);//NumberFormatException

int a[]=new int[5];

a[10]=50; //ArrayIndexOutOfBoundsException

The JVM firstly checks whether the exception is handled or not. If exception is not handled,

JVM provides a default exception handler that performs the following tasks:

 Prints out exception description.

 Prints the stack trace (Hierarchy of methods where the exception occurred).

 Causes the program to terminate.

Java Multi-catch block

A try block can be followed by one or more catch blocks. Each catch block must contain a

different exception handler. So, if you have to perform different tasks at the occurrence of

different exceptions, use java multi-catch block.

public class MultipleCatchBlock1 {

 public static void main(String[] args) {

 try{

 int a[]=new int[5];

 a[5]=30/0;

 }

 catch(ArithmeticException e)

 {

 System.out.println("Arithmetic Exception occurs");

 }

 catch(ArrayIndexOutOfBoundsException e)

 {

 System.out.println("ArrayIndexOutOfBounds Exception occurs");

 }

 catch(Exception e)

 {

 System.out.println("Parent Exception occurs");

 }

 System.out.println("rest of the code");

 }

}

Java finally block

Java finally block is a block that is used to execute important code such as closing connection,

stream etc. Java finally block is always executed whether exception is handled or not. Java

finally block follows try or catch block.

public class TestFinallyBlock2{

 public static void main(String args[]){

 try{

 int data=25/0;

 System.out.println(data);

 }

 catch(ArithmeticException e){System.out.println(e);}

 finally{

System.out.println("finally block is always executed");}

 System.out.println("rest of the code...");

 }

}

8.Discuss about throw & throws keyword.

If a method does not handle a checked exception, the method must declare it using the throws

keyword. The throws keyword appears at the end of a method's signature.

You can throw an exception, either a newly instantiated one or an exception that you just caught,

by using the throw keyword.

Try to understand the difference between throws and throw keywords, throws is used to postpone

the handling of a checked exception and throw is used to invoke an exception explicitly.

The following method declares that it throws a RemoteException –

import java.io.*;

public class className {

 public void deposit(double amount) throws RemoteException {

 // Method implementation

 throw new RemoteException();

 }

 // Remainder of class definition

}

A method can declare that it throws more than one exception, in which case the exceptions are

declared in a list separated by commas. For example, the following method declares that it

throws a RemoteException and an InsufficientFundsException –

import java.io.*;

public class className {

 public void withdraw(double amount) throws RemoteException,

 InsufficientFundsException {

 // Method implementation

 }

 // Remainder of class definition

9. Write about User-defined Exceptions

Exceptions created or customized for user applications are known as user defined Exceptions.

All exceptions must be a child of Throwable.

If you want to write a checked exception that is automatically enforced by the Handle or Declare

Rule, you need to extend the Exception class.

If you want to write a runtime exception, you need to extend the RuntimeException class.

We can define our own Exception class as below −

class MyException extends Exception {

}

// File Name InsufficientFundsException.java

import java.io.*;

public class InsufficientFundsException extends Exception {

 private double amount;

 public InsufficientFundsException(double amount) {

 this.amount = amount;

 }

 public double getAmount() {

 return amount;

 }

}

10.What is a Thread and discuss about life cycle of a Thread.

Multithreading in java is a process of executing multiple threads simultaneously.

A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing and

multithreading, both are used to achieve multitasking. However, we use multithreading than

multiprocessing because threads use a shared memory area. They don't allocate separate memory

area so saves memory, and context-switching between the threads takes less time than process.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform multiple

operations at the same time.

2) You can perform many operations together, so it saves time.

3) Threads are independent, so it doesn't affect other threads if an exception occurs in a single

thread.

Life Cycle of a Thread

A thread goes through various stages in its life cycle. For example, a thread is born, started, runs,

and then dies. The following diagram shows the complete life cycle of a thread.

Following are the stages of the life cycle –

New − A new thread begins its life cycle in the new state. It remains in this state until the

program starts the thread. It is also referred to as a born thread.

Runnable − After a newly born thread is started, the thread becomes runnable. A thread in this

state is considered to be executing its task.

Waiting − Sometimes, a thread transitions to the waiting state while the thread waits for another

thread to perform a task. A thread transitions back to the runnable state only when another thread

signals the waiting thread to continue executing.

Timed Waiting − A runnable thread can enter the timed waiting state for a specified interval of

time. A thread in this state transitions back to the runnable state when that time interval expires

or when the event it is waiting for occurs.

Terminated (Dead) − A runnable thread enters the terminated state when it completes its task or

otherwise terminates.

In Java we use Thread class or Runnable Interface to create threads in a program.

11. Explain about creating Threads in Java.

Multithreading is a Java feature that allows concurrent execution of two or more parts of a

program for maximum utilization of CPU. Each part of such program is called a thread. So,

threads are light-weight processes within a process.

Threads can be created by using two mechanisms :

1. Extending the Thread class

2. Implementing the Runnable Interface

Thread creation by extending the Thread class

We create a class that extends the java.lang.Thread class. This class overrides the run() method

available in the Thread class. A thread begins its life inside run() method. We create an object of

our new class and call start() method to start the execution of a thread. Start() invokes the run()

method on the Thread object.

class MultithreadingDemo extends Thread

{

 public void run()

 {

 try

 {

 // Displaying the thread that is running

 System.out.println ("Thread " +

 Thread.currentThread().getId() +

 " is running");

 }

 catch (Exception e)

 {

 // Throwing an exception

 System.out.println ("Exception is caught");

 }

 }

}

// Main Class

public class Multithread

{

 public static void main(String[] args)

 {

 int n = 8; // Number of threads

 for (int i=0; i<8; i++)

 {

 MultithreadingDemo object = new MultithreadingDemo();

 object.start();

 }

 }

}

The Thread class defines several methods that help manage threads:

Method Meaning

getName Obtain thread’s name

getPriority Obtain thread’s priority

isAlive Determine if a thread is still running

join Wait for a thread to terminate

run Entry point for the thread

sleep Suspend a thread for a period of time

start Start a thread by calling its run method

Runnable Interface

The easiest way to create a thread is to create a class that implements the Runnable interface.

To implement Runnable interface, a class need only implement a single method called run(),

which is declared like this:

public void run()

Inside run(), we will define the code that constitutes the new thread. Example:

public class MyClass implements Runnable {

public void run(){

System.out.println("MyClass running"); } }

To execute the run() method by a thread, pass an instance of MyClass to a Thread in its

constructor (A constructor in Java is a block of code similar to a method that's called when an

instance of an object is created). Here is how that is done:

Thread t1 = new Thread(new MyClass ());

t1.start();

When the thread is started it will call the run() method of the MyClass instance instead of

executing its own run() method. The above example would print out the text "MyClass running.

Multiple Threads

class MyThread implements Runnable {

String name;

Thread t;

 MyThread String thread){

 name = threadname;

 t = new Thread(this, name);

System.out.println("New thread: " + t);

t.start();

}

public void run() {

 try {

 for(int i = 5; i > 0; i--) {

 System.out.println(name + ": " + i);

 Thread.sleep(1000);

}

}catch (InterruptedException e) {

 System.out.println(name + "Interrupted");

}

 System.out.println(name + " exiting.");

}

}

class MultiThread {

public static void main(String args[]) {

 new MyThread("One");

 new MyThread("Two");

 new NewThread("Three");

try {

 Thread.sleep(10000);

} catch (InterruptedException e) {

 System.out.println("Main thread Interrupted");

}

 System.out.println("Main thread exiting.");

 }

}

Sleep method in java

The sleep() method of Thread class is used to sleep a thread for the specified amount of time.

Syntax of sleep() method in java

The Thread class provides two methods for sleeping a thread:

public static void sleep(long miliseconds)throws InterruptedException

public static void sleep(long miliseconds, int nanos)throws InterruptedException

The join() method

The join() method waits for a thread to die. In other words, it causes the currently running

threads to stop executing until the thread it joins with completes its task.

Syntax:

public void join()throws InterruptedException

public void join(long milliseconds)throws InterruptedException

Example of join() method

class TestJoinMethod1 extends Thread{

 public void run(){

 for(int i=1;i<=5;i++){

 try{

 Thread.sleep(500);

 }catch(Exception e){System.out.println(e);}

 System.out.println(i);

 }

 }

public static void main(String args[]){

 TestJoinMethod1 t1=new TestJoinMethod1();

 TestJoinMethod1 t2=new TestJoinMethod1();

 TestJoinMethod1 t3=new TestJoinMethod1();

 t1.start();

 try{

 t1.join();

 }catch(Exception e){System.out.println(e);}

 t2.start();

 t3.start();

 }

}

12. Write about Priorities in Thread.

 Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between 1 and 10. In most

cases, thread schedular schedules the threads according to their priority (known as preemptive

scheduling). But it is not guaranteed because it depends on JVM specification that which

scheduling it chooses.

3 constants defined in Thread class:

public static int MIN_PRIORITY

public static int NORM_PRIORITY

public static int MAX_PRIORITY

class TestMultiPriority1 extends Thread{

 public void run(){

 System.out.println("running thread name is:"+Thread.currentThread().getName());

 System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

 }

 public static void main(String args[]){

 TestMultiPriority1 m1=new TestMultiPriority1();

 TestMultiPriority1 m2=new TestMultiPriority1();

 m1.setPriority(Thread.MIN_PRIORITY);

 m2.setPriority(Thread.MAX_PRIORITY);

 m1.start();

 m2.start();

 } }

1.Write short notes on Math class in Java.

Math Class
public final class Math is in java.lang package which extends Object
The class Math contains methods for performing basic numeric operations such as the
elementary exponential, logarithm, square root, and trigonometric functions.

Properties:
static double E

The double value that is closer than any other to e, the base of the natural logarithms.

static double PI

The double value that is closer than any other to pi, the ratio of the circumference of a circle to its

diameter.

Usage: Math.PI or Math.E

Methods:

static double abs(double a)

Returns the absolute value of a double value.

static double cbrt(double a)

Returns the cube root of a double value.

static double ceil(double a)

Returns the smallest (closest to negative infinity) double value that is greater
than or equal to the argument and is equal to a mathematical integer.

static double cos(double a)

Returns the trigonometric cosine of an angle.

static double cosh(double x)

Returns the hyperbolic cosine of a double value.

static double exp(double a)

Returns Euler's number e raised to the power of a double value.

static double floor(double a)

Returns the largest (closest to positive infinity) double value that is less than or
equal to the argument and is equal to a mathematical integer.

static long floorMod(long x, long y)

Returns the floor modulus of the long arguments.

static double IEEEremainder(double f1, double f2)

Computes the remainder operation on two arguments as prescribed by the IEEE
754 standard.

static int incrementExact(int a)

Returns the argument incremented by one, throwing an exception if the result

https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#abs-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#cbrt-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#ceil-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#cos-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#cosh-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#exp-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floor-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#floorMod-long-long-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#IEEEremainder-double-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#incrementExact-int-

overflows an int.

static double log(double a)

Returns the natural logarithm (base e) of a double value.

static double log10(double a)

Returns the base 10 logarithm of a double value.

static int max(int a, int b)

Returns the greater of two int values.

static int min(int a, int b)

Returns the smaller of two int values.

static long min(long a, long b)

Returns the smaller of two long values.

static double pow(double a, double b)

Returns the value of the first argument raised to the power of the second
argument.

static double random()

Returns a double value with a positive sign, greater than or equal to 0.0 and
less than 1.0.

static double sin(double a)

Returns the trigonometric sine of an angle.

static double sinh(double x)

Returns the hyperbolic sine of a double value.

static double sqrt(double a)

Returns the correctly rounded positive square root of a double value.

static double tan(double a)

Returns the trigonometric tangent of an angle.

static double tanh(double x)

Returns the hyperbolic tangent of a double value.

static double toDegrees(double angrad)

Converts an angle measured in radians to an approximately equivalent angle
measured in degrees.

static double toRadians(double angdeg)

Converts an angle measured in degrees to an approximately equivalent angle
measured in radians.

Ex:- z=Math.sin(x) + Math.sqrt(x *x)+Math.log(y);

https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#log-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#log10-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#max-int-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#min-int-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#min-long-long-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#pow-double-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#random--
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#sin-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#sinh-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#sqrt-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#tan-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#tanh-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#toDegrees-double-
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html#toRadians-double-

2. Discuss about String Handling features in Java.

The class String includes methods for examining individual characters of the sequence, for
comparing strings, for searching strings, for extracting substrings, and for creating a copy of a
string with all characters translated to uppercase or to lowercase

The String class represents character strings. All string literals in Java programs, such as "abc",
are implemented as instances of this class.Strings are constant; their values cannot be changed
after they are created. String buffers support mutable strings. Because String objects are
immutable they can be shared.

Strings are created by using Literal or by Constructor.

By using Literal as below :
 String str = "abc";
is equivalent to:
 char data[] = {'a', 'b', 'c'};
 String str = new String(data)

By using Constructor

String()

Initializes a newly created String object so that it represents an empty character sequence.

String(byte[] bytes)

Constructs a new String by decoding the specified array of bytes using the platform's default charset.

String(byte[] bytes, Charset charset)

Constructs a new String by decoding the specified array of bytes using the specified charset.

Methods:

char charAt(int index)

Returns the char value at the specified index.

int compareTo(String anotherString)

Compares two strings lexicographically.

int compareToIgnoreCase(String str)

Compares two strings lexicographically, ignoring case differences.

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#String()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#String(byte[])
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#String(byte[],%20java.nio.charset.Charset)
https://docs.oracle.com/javase/7/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/7/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#charAt(int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#compareTo(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#compareToIgnoreCase(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html

String concat(String str)

Concatenates the specified string to the end of this string.

boolean contains(CharSequence s)

Returns true if and only if this string contains the specified sequence of char values.

static String copyValueOf(char[] data)

Returns a String that represents the character sequence in the array specified.

boolean endsWith(String suffix)

Tests if this string ends with the specified suffix.

boolean equals(Object anObject)

Compares this string to the specified object.

boolean equalsIgnoreCase(String anotherString)

Compares this String to another String, ignoring case considerations.

byte[] getBytes()

Encodes this String into a sequence of bytes using the platform's default charset, storing

the result into a new byte array.

byte[] getBytes(Charset charset)

Encodes this String into a sequence of bytes using the given charset, storing the result

into a new byte array.

void getChars(int srcBegin, int srcEnd, char[] dst,

int dstBegin)

Copies characters from this string into the destination character array.

int hashCode()

Returns a hash code for this string.

int indexOf(int ch)

Returns the index within this string of the first occurrence of the specified character.

int indexOf(String str)

Returns the index within this string of the first occurrence of the specified substring.

boolean isEmpty()

Returns true if, and only if, length() is 0.

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#concat(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#contains(java.lang.CharSequence)
https://docs.oracle.com/javase/7/docs/api/java/lang/CharSequence.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#copyValueOf(char[])
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#endsWith(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#equals(java.lang.Object)
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#equalsIgnoreCase(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#getBytes()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#getBytes(java.nio.charset.Charset)
https://docs.oracle.com/javase/7/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/7/docs/api/java/nio/charset/Charset.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#getChars(int,%20int,%20char[],%20int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#indexOf(int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#isEmpty()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#length()

int lastIndexOf(int ch)

Returns the index within this string of the last occurrence of the specified character.

int length()

Returns the length of this string.

boolean matches(String regex)

Tells whether or not this string matches the given regular expression.

boolean regionMatches(int toffset, String other, int ooffset,

int len)

Tests if two string regions are equal.

String replace(char oldChar, char newChar)

Returns a new string resulting from replacing all occurrences of oldChar in this string

with newChar.

String replace(CharSequence target, CharSequence replacement)

Replaces each substring of this string that matches the literal target sequence with the
specified literal replacement sequence.

String[] split(String regex)

Splits this string around matches of the given regular expression.

String[] split(String regex, int limit)

Splits this string around matches of the given regular expression.

boolean startsWith(String prefix)

Tests if this string starts with the specified prefix.

String substring(int beginIndex)

Returns a new string that is a substring of this string.

String substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string.

char[] toCharArray()

Converts this string to a new character array.

String toLowerCase()

Converts all of the characters in this String to lower case using the rules of the default

locale.

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#lastIndexOf(int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#length()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#matches(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#regionMatches(int,%20java.lang.String,%20int,%20int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace(char,%20char)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#replace(java.lang.CharSequence,%20java.lang.CharSequence)
https://docs.oracle.com/javase/7/docs/api/java/lang/CharSequence.html
https://docs.oracle.com/javase/7/docs/api/java/lang/CharSequence.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#split(java.lang.String,%20int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html#sum
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#startsWith(java.lang.String)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#substring(int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#substring(int,%20int)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#toCharArray()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#toLowerCase()

String toString()

This object (which is already a string!) is itself returned.

String toUpperCase()

Converts all of the characters in this String to upper case using the rules of the default

locale.

String toUpperCase(Locale locale)

Converts all of the characters in this String to upper case using the rules of the

given Locale.

String trim()

Returns a copy of the string, with leading and trailing whitespace omitted.

static String valueOf(boolean b)

Returns the string representation of the boolean argument.

static String valueOf(char c)

Returns the string representation of the char argument.

static String valueOf(double d)

Returns the string representation of the double argument.

static String valueOf(float f)

Returns the string representation of the float argument.

static String valueOf(int i)

Returns the string representation of the int argument.

Ex:-

public class SubstringExample{

public static void main(String args[]){

String s1="KMMCollege";

System.out.println(s1.substring(2,4));//returns MC

System.out.println(s1.substring(2));//returns MCollege

}}

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#toString()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#toUpperCase()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#toUpperCase(java.util.Locale)
https://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#trim()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(boolean)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(char)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(double)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(float)
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#valueOf(int)

