
http://www.tutorialspoint.com/java/java_basic_operators.htm Copyright © tutorialspoint.com

JAVA - BASIC OPERATORSJAVA - BASIC OPERATORS

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators
into the following groups:

Arithmetic Operators

Relational Operators

Bitwise Operators

Logical Operators

Assignment Operators

Misc Operators

The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The following table lists the arithmetic operators:

Assume integer variable A holds 10 and variable B holds 20, then:

Show Examples

SR.NO Operator and Example

1 + Addition

Adds values on either side of the operator

Example: A + B will give 30

2 - Subtraction

Subtracts right hand operand from left hand operand

Example: A - B will give -10

3 * Multiplication

Multiplies values on either side of the operator

Example: A * B will give 200

4 / Division

Divides left hand operand by right hand operand

Example: B / A will give 2

5 % Modulus

Divides left hand operand by right hand operand and returns remainder

Example: B % A will give 0

6 ++ Increment

http://www.tutorialspoint.com/java/java_basic_operators.htm
/java/java_arithmatic_operators_examples.htm

Increases the value of operand by 1

Example: B++ gives 21

7 -- Decrement

Decreases the value of operand by 1

Example: B-- gives 19

The Relational Operators:
There are following relational operators supported by Java language

Assume variable A holds 10 and variable B holds 20, then:

Show Examples

SR.NO Operator and Description

1 == equalto

Checks if the values of two operands are equal or not, if yes then condition becomes
true.

Example: A == B is not true.

2 != notequalto

Checks if the values of two operands are equal or not, if values are not equal then
condition becomes true.

Example: A ! = B is true.

3 > greaterthan

Checks if the value of left operand is greater than the value of right operand, if yes
then condition becomes true.

Example: A > B is not true.

4 < lessthan

Checks if the value of left operand is less than the value of right operand, if yes then
condition becomes true.

Example: A < B is true.

5 >= greaterthanorequalto

Checks if the value of left operand is greater than or equal to the value of right
operand, if yes then condition becomes true.

Example A >= B is not true.

6 <= lessthanorequalto

Checks if the value of left operand is less than or equal to the value of right operand, if
yes then condition becomes true.

exampleA <= B is true.

The Bitwise Operators:

/java/java_relational_operators_examples.htm

Java defines several bitwise operators, which can be applied to the integer types, long, int, short,
char, and byte.

Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; and b = 13;
now in binary format they will be as follows:

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

The following table lists the bitwise operators:

Assume integer variable A holds 60 and variable B holds 13 then:

Show Examples

SR.NO Operator and Description

1 & bitwiseand

Binary AND Operator copies a bit to the result if it exists in both operands.

Example: A & B will give 12 which is 0000 1100

2 | bitwiseor

Binary OR Operator copies a bit if it exists in either operand.

Example: A | B will give 61 which is 0011 1101

3 ^ bitwiseXOR

Binary XOR Operator copies the bit if it is set in one operand but not both.

Example: AB will give 49 which is 0011 0001

4 ~ bitwisecompliment

Binary Ones Complement Operator is unary and has the effect of 'flipping' bits.

Example: A will give -61 which is 1100 0011 in 2's complement form due to a signed
binary number.

5 << leftshift

Binary Left Shift Operator. The left operands value is moved left by the number of bits
specified by the right operand

Example: A << 2 will give 240 which is 1111 0000

6 >> rightshift

Binary Right Shift Operator. The left operands value is moved right by the number of
bits specified by the right operand.

Example: A >> 2 will give 15 which is 1111

/java/java_bitwise_operators_examples.htm

7 >>> zerofillrightshift

Shift right zero fill operator. The left operands value is moved right by the number of
bits specified by the right operand and shifted values are filled up with zeros.

Example: A >>>2 will give 15 which is 0000 1111

The Logical Operators:
The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false, then:

Show Examples

Operator Description

1 && logicaland

Called Logical AND operator. If both the operands are non-zero, then the condition
becomes true.

Example A && B is false.

2 || logicalor

Called Logical OR Operator. If any of the two operands are non-zero, then the
condition becomes true.

Example A | | B is true.

3 ! logicalnot

Called Logical NOT Operator. Use to reverses the logical state of its operand. If a
condition is true then Logical NOT operator will make false.

Example ! A && B is true.

The Assignment Operators:
There are following assignment operators supported by Java language:

Show Examples

SR.NO Operator and Description

1 =

Simple assignment operator, Assigns values from right side operands to left side
operand.

Example: C = A + B will assign value of A + B into C

2 +=

Add AND assignment operator, It adds right operand to the left operand and assign the
result to left operand.

Example: C += A is equivalent to C = C + A

3 -=

/java/java_logical_operators_examples.htm
/java/java_assignment_operators_examples.htm

Subtract AND assignment operator, It subtracts right operand from the left operand
and assign the result to left operand.

Example:C -= A is equivalent to C = C - A

4 *=

Multiply AND assignment operator, It multiplies right operand with the left operand and
assign the result to left operand.

Example: C *= A is equivalent to C = C * A

5 /=

Divide AND assignment operator, It divides left operand with the right operand and
assign the result to left operand

ExampleC /= A is equivalent to C = C / A

6 %=

Modulus AND assignment operator, It takes modulus using two operands and assign
the result to left operand.

Example: C %= A is equivalent to C = C % A

7 <<=

Left shift AND assignment operator.

ExampleC <<= 2 is same as C = C << 2

8 >>=

Right shift AND assignment operator

Example C >>= 2 is same as C = C >> 2

9 &=

Bitwise AND assignment operator.

Example: C &= 2 is same as C = C & 2

10 ^=

bitwise exclusive OR and assignment operator.

Example: C ^= 2 is same as C = C ^ 2

11 |=

bitwise inclusive OR and assignment operator.

Example: C |= 2 is same as C = C | 2

Miscellaneous Operators
There are few other operators supported by Java Language.

Conditional Operator ? :

Conditional operator is also known as the ternary operator. This operator consists of three
operands and is used to evaluate Boolean expressions. The goal of the operator is to decide which
value should be assigned to the variable. The operator is written as:

variable x = (expression) ? value if true : value if false

Following is the example:

public class Test {

 public static void main(String args[]){
 int a, b;
 a = 10;
 b = (a == 1) ? 20: 30;
 System.out.println("Value of b is : " + b);

 b = (a == 10) ? 20: 30;
 System.out.println("Value of b is : " + b);
 }
}

This would produce the following result −

Value of b is : 30
Value of b is : 20

instance of Operator:
This operator is used only for object reference variables. The operator checks whether the object
is of a particular type classtypeorinterfacetype. instanceof operator is wriiten as:

(Object reference variable) instanceof (class/interface type)

If the object referred by the variable on the left side of the operator passes the IS-A check for the
class/interface type on the right side, then the result will be true. Following is the example:

public class Test {

 public static void main(String args[]){
 String name = "James";
 // following will return true since name is type of String
 boolean result = name instanceof String;
 System.out.println(result);
 }
}

This would produce the following result:

true

This operator will still return true if the object being compared is the assignment compatible with
the type on the right. Following is one more example:

class Vehicle {}

public class Car extends Vehicle {
 public static void main(String args[]){
 Vehicle a = new Car();
 boolean result = a instanceof Car;
 System.out.println(result);
 }
}

This would produce the following result:

true

Precedence of Java Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator:

For example, x = 7 + 3 * 2; here x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix [] . dotoperator Left toright

Unary ++ - - ! ~ Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift >> >>> << Left to right

Relational > >= < <= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

What is Next?
Next chapter would explain about loop control in Java programming. The chapter will describe
various types of loops and how these loops can be used in Java program development and for what
purposes they are being used.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

