



## Unit-1

# Logics and Proofs

# Logic

- Crucial for mathematical reasoning
- Important for program design
- Used for designing electronic circuitry
- (Propositional )Logic is a system based on propositions.
- A proposition is a (declarative) statement that is either true or false (not both).
- We say that the truth value of a proposition is either true (T) or false (F).
- Corresponds to 1 and 0 in digital circuits

# The Statement/Proposition Game

"Elephants are bigger than mice."

Is this a statement? yes

Is this a proposition? yes

What is the truth value  
of the proposition? true

# The Statement/Proposition Game

“520 < 111”

Is this a statement? yes

Is this a proposition? yes

What is the truth value  
of the proposition? false

# The Statement/Proposition Game

" $y > 5$ "

Is this a statement? yes

Is this a proposition? no

Its truth value depends on the value of  $y$ ,  
but this value is not specified.

We call this type of statement a  
propositional function or open sentence.

# The Statement/Proposition Game

"Today is January 27 and  $99 < 5$ ."

Is this a statement? yes

Is this a proposition? yes

What is the truth value  
of the proposition? false

# The Statement/Proposition Game

"Please do not fall asleep."

Is this a statement? no

It's a request.

Is this a proposition? no

Only statements can be propositions.

# The Statement/Proposition Game

"If the moon is made of cheese,  
then I will be rich."

Is this a statement? yes

Is this a proposition? yes

What is the truth value  
of the proposition? probably true

# The Statement/Proposition Game

" $x < y$  if and only if  $y > x$ ."

Is this a statement? yes

Is this a proposition? yes

... because its truth value  
does not depend on  
specific values of  $x$  and  $y$ .

What is the truth value  
of the proposition? true

# Combining Propositions

As we have seen in the previous examples, one or more propositions can be combined to form a single compound proposition.

We formalize this by denoting propositions with letters such as  $p, q, r, s$ , and introducing several logical operators or logical connectives.

# Logical Operators (Connectives)

We will examine the following logical operators:

- Negation (NOT,  $\neg$ )
- Conjunction (AND,  $\wedge$ )
- Disjunction (OR,  $\vee$ )
- Exclusive-or (XOR,  $\oplus$ )
- Implication (if - then,  $\rightarrow$ )
- Biconditional (if and only if,  $\leftrightarrow$ )

Truth tables can be used to show how these operators can combine propositions to compound propositions.

# Negation (NOT)

Unary Operator, Symbol:  $\neg$

| $P$       | $\neg P$  |
|-----------|-----------|
| true (T)  | false (F) |
| false (F) | true (T)  |

# Conjunction (AND)

Binary Operator, Symbol:  $\wedge$

| P | Q | $P \wedge Q$ |
|---|---|--------------|
| T | T | T            |
| T | F | F            |
| F | T | F            |
| F | F | F            |

# Disjunction (OR)

Binary Operator, Symbol:  $\vee$

| P | Q | $P \vee Q$ |
|---|---|------------|
| T | T | T          |
| T | F | T          |
| F | T | T          |
| F | F | F          |

# Exclusive Or (XOR)

Binary Operator, Symbol:  $\oplus$

| P | Q | $P \oplus Q$ |
|---|---|--------------|
| T | T | F            |
| T | F | T            |
| F | T | T            |
| F | F | F            |

# Implication (if - then)

Binary Operator, Symbol:  $\rightarrow$

| P | Q | $P \rightarrow Q$ |
|---|---|-------------------|
| T | T | T                 |
| T | F | F                 |
| F | T | T                 |
| F | F | T                 |

# Biconditional (if and only if)

Binary Operator, Symbol:  $\leftrightarrow$

| P | Q | $P \leftrightarrow Q$ |
|---|---|-----------------------|
| T | T | T                     |
| T | F | F                     |
| F | T | F                     |
| F | F | T                     |

# Statements and Operators

Statements and operators can be combined in any way to form new statements.

| P | Q | $\neg P$ | $\neg Q$ | $(\neg P) \vee (\neg Q)$ |
|---|---|----------|----------|--------------------------|
| T | T | F        | F        | F                        |
| T | F | F        | T        | T                        |
| F | T | T        | F        | T                        |
| F | F | T        | T        | T                        |

# Statements and Operations

Statements and operators can be combined in any way to form new statements.

| P | Q | $P \wedge Q$ | $\neg(P \wedge Q)$ | $(\neg P) \vee (\neg Q)$ |
|---|---|--------------|--------------------|--------------------------|
| T | T | T            | F                  | F                        |
| T | F | F            | T                  | T                        |
| F | T | F            | T                  | T                        |
| F | F | F            | T                  | T                        |

# Exercises

- To take discrete mathematics, you must have taken calculus or a course in computer science.
- When you buy a new car from Acme Motor Company, you get \$2000 back in cash or a 2% car loan.
- School is closed if more than 2 feet of snow falls or if the wind chill is below -100.

# Exercises

- To take discrete mathematics, you must have taken calculus or a course in computer science.
  - P: take discrete mathematics
  - Q: take calculus
  - R: take a course in computer science
- $P \rightarrow Q \vee R$
- Problem with proposition R
  - What if I want to represent "take CMSC201"?

# Exercises

- When you buy a new car from Acme Motor Company, you get \$2000 back in cash or a 2% car loan.
  - P: buy a car from Acme Motor Company
  - Q: get \$2000 cash back
  - R: get a 2% car loan
- $P \rightarrow Q \oplus R$
- Why use XOR here? - example of ambiguity of natural languages

# Exercises

- School is closed if more than 2 feet of snow falls or if the wind chill is below -100.
  - P: School is closed
  - Q: 2 feet of snow falls
  - R: wind chill is below -100
- $Q \wedge R \rightarrow P$
- Precedence among operators:  
 $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$

# Equivalent Statements

| P | Q | $\neg(P \wedge Q)$ | $(\neg P) \vee (\neg Q)$ | $\neg(P \wedge Q) \leftrightarrow (\neg P) \vee (\neg Q)$ |
|---|---|--------------------|--------------------------|-----------------------------------------------------------|
| T | T | F                  | F                        | T                                                         |
| T | F | T                  | T                        | T                                                         |
| F | T | T                  | T                        | T                                                         |
| F | F | T                  | T                        | T                                                         |

The statements  $\neg(P \wedge Q)$  and  $(\neg P) \vee (\neg Q)$  are logically equivalent, since they have the same truth table, or put it in another way,  $\neg(P \wedge Q) \leftrightarrow (\neg P) \vee (\neg Q)$  is always true.

# Tautologies and Contradictions

A tautology is a statement that is always true.

Examples:

- $R \vee (\neg R)$
- $\neg(P \wedge Q) \leftrightarrow (\neg P) \vee (\neg Q)$

A contradiction is a statement that is always false.

Examples:

- $R \wedge (\neg R)$
- $\neg(\neg(P \wedge Q) \leftrightarrow (\neg P) \vee (\neg Q))$

The negation of any tautology is a contradiction, and the negation of any contradiction is a tautology.

# Equivalence

Definition: two propositional statements  $S_1$  and  $S_2$  are said to be (logically) equivalent, denoted  $S_1 \equiv S_2$  if

- They have the same truth table, or
- $S_1 \Leftrightarrow S_2$  is a tautology

Equivalence can be established by

- Constructing truth tables
- Using equivalence laws (Table 5 in Section 1.2)

# Equivalence

## Equivalence laws

- Identity laws,  $P \wedge T \equiv P$ ,
- Domination laws,  $P \wedge F \equiv F$ ,
- Idempotent laws,  $P \wedge P \equiv P$ ,
- Double negation law,  $\neg(\neg P) \equiv P$
- Commutative laws,  $P \wedge Q \equiv Q \wedge P$ ,
- Associative laws,  $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$ ,
- Distributive laws,  $P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$ ,
- De Morgan's laws,  $\neg(P \wedge Q) \equiv (\neg P) \vee (\neg Q)$
- Law with implication  $P \rightarrow Q \equiv \neg P \vee Q$

# Exercises

- Show that  $P \rightarrow Q \equiv \neg P \vee Q$ : by truth table
- Show that  $(P \rightarrow Q) \wedge (P \rightarrow R) \equiv P \rightarrow (Q \wedge R)$ :  
by equivalence laws (q20, p27):
  - Law with implication on both sides
  - Distribution law on LHS

# Propositional Functions & Predicates

Propositional function (open sentence):  
statement involving one or more variables,

e.g.:  $x-3 > 5$ .

Let us call this propositional function  $P(x)$ , where  
 $P$  is the predicate and  $x$  is the variable.

What is the truth value of  $P(2)$ ? false

What is the truth value of  $P(8)$ ? false

What is the truth value of  $P(9)$ ? true

When a variable is given a value, it is said to be  
instantiated

Truth value depends on value of variable

# Propositional Functions

Let us consider the propositional function  $Q(x, y, z)$  defined as:

$$x + y = z.$$

Here,  $Q$  is the predicate and  $x$ ,  $y$ , and  $z$  are the variables.

What is the truth value of  $Q(2, 3, 5)$  ?      true

What is the truth value of  $Q(0, 1, 2)$  ?      false

What is the truth value of  $Q(9, -9, 0)$  ?      true

A propositional function (predicate) becomes a proposition when all its variables are instantiated.

# Propositional Functions

Other examples of propositional functions

$\text{Person}(x)$ , which is true if  $x$  is a person

$\text{Person}(\text{Socrates}) = \text{T}$

$\text{Person}(\text{dolly-the-sheep}) = \text{F}$

$\text{CSCourse}(x)$ , which is true if  $x$  is a computer science course

$\text{CSCourse}(\text{CMSC201}) = \text{T}$

$\text{CSCourse}(\text{MATH155}) = \text{F}$

How do we say

All humans are mortal

One CS course

# Universal Quantification

Let  $P(x)$  be a predicate (propositional function).

**Universally quantified sentence:**

For all  $x$  in the universe of discourse  $P(x)$  is true.

Using the universal quantifier  $\forall$ :

$\forall x P(x)$  “for all  $x P(x)$ ” or “for every  $x P(x)$ ”

(Note:  $\forall x P(x)$  is either true or false, so it is a proposition, not a propositional function.)

# Universal Quantification

Example: Let the universe of discourse be all people

$S(x)$ :  $x$  is a UMBC student.

$G(x)$ :  $x$  is a genius.

What does  $\forall x (S(x) \rightarrow G(x))$  mean ?

"If  $x$  is a UMBC student, then  $x$  is a genius." or  
"All UMBC students are geniuses."

If the universe of discourse is all UMBC students,  
then the same statement can be written as  
 $\forall x G(x)$

# Existential Quantification

**Existentially quantified sentence:**

There exists an  $x$  in the universe of discourse for which  $P(x)$  is true.

Using the existential quantifier  $\exists$ :

$\exists x P(x)$  “There is an  $x$  such that  $P(x)$ .”

“There is at least one  $x$  such that  $P(x)$ .”

(Note:  $\exists x P(x)$  is either true or false, so it is a proposition, but no propositional function.)

# Existential Quantification

Example:

$P(x)$ :  $x$  is a UMBC professor.

$G(x)$ :  $x$  is a genius.

What does  $\exists x (P(x) \wedge G(x))$  mean ?

"There is an  $x$  such that  $x$  is a UMBC professor and  $x$  is a genius."

or

"At least one UMBC professor is a genius."

# Quantification

Another example:

Let the universe of discourse be the real numbers.

What does  $\forall x \exists y (x + y = 320)$  mean ?

"For every  $x$  there exists a  $y$  so that  $x + y = 320$ ."

Is it true? yes

Is it true for the natural numbers? no

# Disproof by Counterexample

A counterexample to  $\forall x P(x)$  is an object  $c$  so that  $P(c)$  is false.

Statements such as  $\forall x (P(x) \rightarrow Q(x))$  can be disproved by simply providing a counterexample.

Statement: "All birds can fly."

Disproved by counterexample: Penguin.

# Negation

$\neg(\forall x P(x))$  is logically equivalent to  $\exists x (\neg P(x))$ .

$\neg(\exists x P(x))$  is logically equivalent to  $\forall x (\neg P(x))$ .

See Table 2 in Section 1.3.

This is de Morgan's law for quantifiers

# Negation

## Examples

Not all roses are red

$$\neg \forall x (\text{Rose}(x) \rightarrow \text{Red}(x))$$

$$\exists x (\text{Rose}(x) \wedge \neg \text{Red}(x))$$

Nobody is perfect

$$\neg \exists x (\text{Person}(x) \wedge \text{Perfect}(x))$$

$$\forall x (\text{Person}(x) \rightarrow \neg \text{Perfect}(x))$$

# Nested Quantifier

A predicate can have more than one variables.

- $S(x, y, z)$ :  $z$  is the sum of  $x$  and  $y$
- $F(x, y)$ :  $x$  and  $y$  are friends

We can quantify individual variables in different ways

- $\forall x, y, z (S(x, y, z) \rightarrow (x \leq z \wedge y \leq z))$
- $\exists x \forall y \forall z (F(x, y) \wedge F(x, z) \wedge (y \neq z) \rightarrow \neg F(y, z))$

# Nested Quantifier

Exercise: translate the following English sentence into logical expression

"There is a rational number in between every pair of distinct rational numbers"

Use predicate  $Q(x)$ , which is true when  $x$  is a rational number

$$\forall x, y (Q(x) \wedge Q(y) \wedge (x < y) \rightarrow \exists u (Q(u) \wedge (x < u) \wedge (u < y)))$$

# Rules of Inference

Rules of inference provide the justification of the steps used in a proof.

One important rule is called modus ponens or the law of detachment. It is based on the tautology  $(p \wedge (p \rightarrow q)) \rightarrow q$ . We write it in the following way:

$$\frac{p \\ p \rightarrow q}{\therefore q}$$

The two hypotheses  $p$  and  $p \rightarrow q$  are written in a column, and the conclusion below a bar, where  $\therefore$  means "therefore".

# Rules of Inference

The general form of a rule of inference is:

$$\frac{p_1 \text{ and } p_2 \text{ and } \dots \text{ and } p_n \text{ are all true, then } q \text{ is true as well.}}{\therefore q}$$

Each rule is an established tautology of

$$p_1 \wedge p_2 \wedge \dots \wedge p_n \rightarrow q$$

These rules of inference can be used in any mathematical argument and do not require any proof.

# Rules of Inference

$$\frac{p}{\therefore p \vee q} \text{ Addition}$$

$$\frac{p \wedge q}{\therefore p} \text{ Simplification}$$

$$\frac{p \quad q}{\therefore p \wedge q} \text{ Conjunction}$$

$$\frac{\begin{array}{c} \neg q \\ p \rightarrow q \\ \hline \therefore \neg p \end{array}}{\text{Modus tollens}}$$
$$\frac{\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \hline \therefore p \rightarrow r \end{array}}{\text{Hypothetical syllogism (chaining)}}$$

$$\frac{\begin{array}{c} r \\ p \vee q \\ \neg p \\ \hline \therefore q \end{array}}{\text{Disjunctive syllogism (resolution)}}$$

# Arguments

Just like a rule of inference, an **argument** consists of one or more hypotheses (or premises) and a conclusion.

We say that an argument is **valid**, if whenever all its hypotheses are true, its conclusion is also true.

However, if any hypothesis is false, even a valid argument can lead to an incorrect conclusion.

Proof: show that **hypotheses  $\rightarrow$  conclusion** is true using rules of inference

# Arguments

## Example:

"If  $101$  is divisible by  $3$ , then  $101^2$  is divisible by  $9$ .  
 $101$  is divisible by  $3$ . Consequently,  $101^2$  is divisible by  $9$ ."

Although the argument is **valid**, its conclusion is **incorrect**, because one of the hypotheses is false (" $101$  is divisible by  $3$ .").

If in the above argument we replace  $101$  with  $102$ , we could correctly conclude that  $102^2$  is divisible by  $9$ .

# Arguments

Which rule of inference was used in the last argument?

p: "101 is divisible by 3."

q: "101<sup>2</sup> is divisible by 9."

$$\frac{p \\ p \rightarrow q}{\therefore q} \text{ Modus ponens}$$

Unfortunately, one of the hypotheses (p) is false. Therefore, the conclusion q is incorrect.

# Arguments

## Another example:

"If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow.

Therefore, if it rains today, then we will have a barbecue tomorrow."

This is a **valid** argument: If its hypotheses are true, then its conclusion is also true.

# Arguments

Let us formalize the previous argument:

p: "It is raining today."

q: "We will not have a barbecue today."

r: "We will have a barbecue tomorrow."

So the argument is of the following form:

$$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \hline \therefore p \rightarrow r \end{array} \quad \begin{array}{l} \text{Hypothetical} \\ \text{syllogism} \end{array}$$

# Arguments

Another example:

Gary is either intelligent or a good actor.  
If Gary is intelligent, then he can count  
from 1 to 10.

Gary can only count from 1 to 3.  
Therefore, Gary is a good actor.

i: "Gary is intelligent."  
a: "Gary is a good actor."  
c: "Gary can count from 1 to 10."

# Arguments

i: "Gary is intelligent."

a: "Gary is a good actor."

c: "Gary can count from 1 to 10."

Step 1:  $\neg c$  Hypothesis

Step 2:  $i \rightarrow c$  Hypothesis

Step 3:  $\neg i$  Modus tollens Steps 1 & 2

Step 4:  $a \vee i$  Hypothesis

Step 5: a Disjunctive Syllogism  
Steps 3 & 4

Conclusion: a ("Gary is a good actor.")

# Arguments

Yet another example:

If you listen to me, you will pass CS 320.  
You passed CS 320.  
Therefore, you have listened to me.

Is this argument valid?

No, it assumes  $((p \rightarrow q) \wedge q) \rightarrow p$ .

This statement is not a tautology. It is false if p is false and q is true.

# Rules of Inference for Quantified Statements

$$\forall x P(x)$$
$$\therefore P(c) \text{ if}$$
$$P(c) \text{ for an arbitrary } c \in U$$
$$\therefore \forall x P(x)$$

Universal instantiation

$$\exists x P(x)$$
$$\therefore P(c) \text{ for some element } c \in U$$

Universal generalization

$$P(c) \text{ for some element } c \in U$$
$$\therefore \exists x P(x)$$

Existential instantiation

Existential generalization

# Rules of Inference for Quantified Statements

## Example:

Every UMB student is a genius.

George is a UMB student.

Therefore, George is a genius.

$U(x)$ : "x is a UMB student."

$G(x)$ : "x is a genius."

# Rules of Inference for Quantified Statements

The following steps are used in the argument:

Step 1:  $\forall x (U(x) \rightarrow G(x))$  Hypothesis

Step 2:  $U(\text{George}) \rightarrow G(\text{George})$  Univ. instantiation  
using Step 1

Step 3:  $U(\text{George})$  Hypothesis

Step 4:  $G(\text{George})$  Modus ponens  
using Steps 2 & 3

$$\frac{\forall x P(x)}{\therefore P(c) \text{ if } c \in U} \text{ Universal instantiation}$$

# Proving Theorems

## Direct proof:

An implication  $p \rightarrow q$  can be proved by showing that if  $p$  is true, then  $q$  is also true.

**Example:** Give a direct proof of the theorem "If  $n$  is odd, then  $n^2$  is odd."

**Idea:** Assume that the hypothesis of this implication is true ( $n$  is odd). Then use rules of inference and known theorems of math to show that  $q$  must also be true ( $n^2$  is odd).

# Proving Theorems

$n$  is odd.

Then  $n = 2k + 1$ , where  $k$  is an integer.

Consequently,  $n^2 = (2k + 1)^2$ .

$$\begin{aligned} &= 4k^2 + 4k + 1 \\ &= 2(2k^2 + 2k) + 1 \end{aligned}$$

Since  $n^2$  can be written in this form, it is odd.

# Proving Theorems

## Indirect proof:

An implication  $p \rightarrow q$  is equivalent to its **contra-positive**  $\neg q \rightarrow \neg p$ . Therefore, we can prove  $p \rightarrow q$  by showing that whenever  $q$  is false, then  $p$  is also false.

**Example:** Give an indirect proof of the theorem "If  $3n + 2$  is odd, then  $n$  is odd."

**Idea:** Assume that the conclusion of this implication is false ( $n$  is even). Then use rules of inference and known theorems to show that  $p$  must also be false ( $3n + 2$  is even).

# Proving Theorems

$n$  is even.

Then  $n = 2k$ , where  $k$  is an integer.

$$\begin{aligned} \text{It follows that } 3n + 2 &= 3(2k) + 2 \\ &= 6k + 2 \\ &= 2(3k + 1) \end{aligned}$$

Therefore,  $3n + 2$  is even.

We have shown that the contrapositive of the implication is true, so the implication itself is also true (If  $3n + 2$  is odd, then  $n$  is odd).

# Proving Theorems

Indirect Proof is a special case of proof by contradiction

Suppose  $n$  is even (negation of the conclusion).

Then  $n = 2k$ , where  $k$  is an integer.

$$\begin{aligned} \text{It follows that } 3n + 2 &= 3(2k) + 2 \\ &= 6k + 2 \\ &= 2(3k + 1) \end{aligned}$$

Therefore,  $3n + 2$  is even.

However, this is a contradiction since  $3n + 2$  is given to be odd, so the conclusion ( $n$  is odd) holds.

# Another Example on Proof

Anyone performs well is either intelligent or a good actor.

If someone is intelligent, then he/she can count from 1 to 10.

Gary performs well.

Gary can only count from 1 to 3.

Therefore, not everyone is both intelligent and a good actor

$P(x)$ :  $x$  performs well

$I(x)$ :  $x$  is intelligent

$A(x)$ :  $x$  is a good actor

$C(x)$ :  $x$  can count from 1 to 10

# Another Example on Proof

Hypotheses:

1. Anyone performs well is either intelligent or a good actor.

$$\forall x (P(x) \rightarrow I(x) \vee A(x))$$

2. If someone is intelligent, then he/she can count from 1 to 10.

$$\forall x (I(x) \rightarrow C(x))$$

3. Gary performs well.

$$P(G)$$

4. Gary can only count from 1 to 3.

$$\neg C(G)$$

Conclusion: not everyone is both intelligent and a good actor

$$\neg \forall x (I(x) \wedge A(x))$$

# Another Example on Proof

Direct proof:

Step 1:  $\forall x (P(x) \rightarrow I(x) \vee A(x))$  Hypothesis

Step 2:  $P(G) \rightarrow I(G) \vee A(G)$  Univ. Inst. Step 1

Step 3:  $P(G)$  Hypothesis

Step 4:  $I(G) \vee A(G)$  Modus ponens Steps 2 & 3

Step 5:  $\forall x (I(x) \rightarrow C(x))$  Hypothesis

Step 6:  $I(G) \rightarrow C(G)$  Univ. inst. Step 5

Step 7:  $\neg C(G)$  Hypothesis

Step 8:  $\neg I(G)$  Modus tollens Steps 6 & 7

Step 9:  $\neg I(G) \vee \neg A(G)$  Addition Step 8

Step 10:  $\neg(I(G) \wedge A(G))$  Equivalence Step 9

Step 11:  $\exists x \neg(I(x) \wedge A(x))$  Exist. general. Step 10

Step 12:  $\neg \forall x (I(x) \wedge A(x))$  Equivalence Step 11

Conclusion:  $\neg \forall x (I(x) \wedge A(x))$ , not everyone is both intelligent and a good actor.

# Summary, Section 1.5

- Terminology (axiom, theorem, conjecture, argument, etc.)
- Rules of inference (Tables 1 and 2)
- Valid argument (hypotheses and conclusion)
- Construction of valid argument using rules of inference
  - For each rule used, write down and the statements involved in the proof
- Direct and indirect proofs
  - Other proof methods (e.g., induction, pigeon hole) will be introduced in later chapters