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Unit-1

Logics and Proofs
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Logic
• Crucial for mathematical reasoning
• Important for program design
• Used for designing electronic circuitry

• (Propositional )Logic is a system based on 
propositions.

• A proposition is a (declarative) statement 
that is either true or false (not both).

• We say that the truth value of a proposition 
is either true (T) or false (F).

• Corresponds to 1 and 0 in digital circuits
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The Statement/Proposition Game

“Elephants are bigger than mice.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value 
of the proposition? true
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The Statement/Proposition Game

“520 < 111”

Is this a statement? yes

Is this a proposition? yes

What is the truth value 
of the proposition? false
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The Statement/Proposition Game

“y > 5”

Is this a statement? yes

Is this a proposition? no

Its truth value depends on the value of y, 
but this value is not specified.
We call this type of statement a 
propositional function or open sentence.
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The Statement/Proposition Game

“Today is January 27  and  99 < 5.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value 
of the proposition? false
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The Statement/Proposition Game

“Please do not fall asleep.”

Is this a statement? no

Is this a proposition? no

Only statements can be propositions.

It’s a request.
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The Statement/Proposition Game

“If the moon is made of cheese,
then I will be rich.”

Is this a statement? yes

Is this a proposition? yes

What is the truth value 
of the proposition? probably true
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The Statement/Proposition Game
“x < y if and only if y > x.”

Is this a statement? yes
Is this a proposition? yes

What is the truth value 
of the proposition? true

… because its truth value  
does not depend on 
specific values of x and y.
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Combining Propositions

As we have seen in the previous examples, 
one or more propositions can be combined 
to form a single compound proposition.

We formalize this by denoting propositions 
with letters such as p, q, r, s, and 
introducing several logical operators or 
logical connectives.  
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Logical Operators (Connectives)
We will examine the following logical operators:

•  Negation (NOT, ¬)

•  Conjunction (AND, ∧)

•  Disjunction (OR, ∨)

•  Exclusive-or (XOR, ⊕ )

•  Implication      (if – then, → )

•  Biconditional  (if and only if, ↔ )

Truth tables can be used to show how these 
operators can combine propositions to compound 
propositions.
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Negation (NOT)

Unary Operator, Symbol:  ¬

P ¬ P

true (T) false (F)

false (F) true (T)
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Conjunction (AND)
Binary Operator, Symbol:  ∧

P Q P∧ Q
T T T
T F F
F T F
F F F
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Disjunction (OR)
Binary Operator, Symbol:  ∨

P Q P ∨ Q
T T T
T F T
F T T
F F F
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Exclusive Or (XOR)
Binary Operator, Symbol:  ⊕

P Q P⊕Q
T T F
T F T
F T T
F F F
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Implication (if - then)
Binary Operator, Symbol:  →

P Q P→Q
T T T
T F F
F T T
F F T
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Biconditional (if and only if)
Binary Operator, Symbol:  ↔

P Q P↔Q
T T T
T F F
F T F
F F T
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Statements and Operators
Statements and operators can be combined in any 

way to form new statements.

P Q ¬P ¬Q (¬P)∨(¬Q)

T T F F F
T F F T T
F T T F T
F F T T T
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Statements and Operations
Statements and operators can be combined in any 

way to form new statements.

P Q P∧
Q ¬(P∧Q) (¬P)∨(¬Q)

T T T F F
T F F T T
F T F T T
F F F T T
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Exercises
• To take discrete mathematics, you must have 

taken calculus or a course in computer 
science.

• When you buy a new car from Acme Motor 
Company, you get $2000 back in cash or a 2% 
car loan.

• School is closed if more than 2 feet of snow 
falls or if the wind chill is below -100.
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Exercises

– P: take discrete mathematics
– Q: take calculus
– R: take a course in computer science

• P → Q ∨ R
• Problem with proposition R

– What if I want to represent “take CMSC201”?

•To take discrete mathematics, you must have 
taken calculus or a course in computer science.
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Exercises

– P: buy a car from Acme Motor Company
– Q: get $2000 cash back
– R: get a 2% car loan

• P → Q ⊕ R

• Why use XOR here? – example of ambiguity 
of natural languages

•When you buy a new car from Acme Motor 
Company, you get $2000 back in cash or a 2% 
car loan.
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Exercises

– P: School is closed 
– Q: 2 feet of snow falls
– R: wind chill is below -100

• Q ∧ R → P

• Precedence among operators:
¬, ∧, ∨, →, ↔

•School is closed if more than 2 feet of snow 
falls or if the wind chill is below -100.



M.NAGASRAVANI,ASSIST.PROF, DEPT OF MCA,KMMIPS

24

Equivalent Statements
P Q ¬(P∧Q) (¬P)∨(¬Q) ¬(P∧Q)↔(¬P)∨(¬Q)

T T F F T
T F T T T
F T T T T
F F T T T

The statements ¬(P∧Q) and (¬P) ∨ (¬Q) are logically 
equivalent, since they have the same truth table, or put 
it in another way, ¬(P∧Q) ↔(¬P) ∨ (¬Q) is always true.
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Tautologies and Contradictions
A tautology is a statement that is always true.
Examples: 

– R∨(¬R)
– ¬(P∧Q) ↔ (¬P)∨(¬ Q)

A contradiction is a statement that is always false.
Examples: 

– R∧(¬R)
– ¬(¬(P ∧ Q) ↔  (¬P) ∨ (¬Q))

The negation of any tautology is a contradiction, and 
the negation of any contradiction is a tautology.
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Equivalence
Definition: two propositional statements 

S1 and S2 are said to be (logically) 
equivalent, denoted S1 ≡ S2 if
– They have the same truth table, or
– S1 ⇔ S2 is a tautology

Equivalence can be established by
– Constructing truth tables
– Using equivalence laws (Table 5 in Section 1.2)
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Equivalence
Equivalence laws

– Identity laws, P ∧ T ≡  P, 
– Domination laws, P ∧ F ≡  F, 
– Idempotent laws, P ∧ P ≡  P, 
– Double negation law, ¬ (¬ P) ≡  P
– Commutative laws, P ∧ Q ≡  Q ∧ P, 
– Associative laws, P ∧ (Q ∧ R)≡  (P ∧ Q) ∧ R, 
– Distributive laws, P ∧ (Q ∨ R)≡  (P ∧ Q) ∨ (P ∧ R), 
– De Morgan’s laws, ¬ (P∧Q) ≡ (¬ P) ∨ (¬ Q)
– Law with implication  P → Q ≡ ¬ P ∨ Q
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Exercises
• Show that P → Q ≡ ¬ P ∨ Q:  by truth table   
• Show that (P → Q) ∧ (P → R) ≡ P → (Q ∧ R): 

by equivalence laws (q20, p27): 
– Law with implication on both sides
– Distribution law on LHS
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Propositional Functions & Predicates
Propositional function (open sentence):
statement involving one or more variables,

e.g.: x-3 > 5.
Let us call this propositional function P(x), where 

P is the predicate and x is the variable.
What is the truth value of P(2) ? false
What is the truth value of P(8) ?
What is the truth value of P(9) ?

false
true

When a variable is given a value, it is said to be 
instantiated
Truth value depends on value of variable
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Propositional Functions
Let us consider the propositional function 

Q(x, y, z) defined as:  
x + y = z.
Here, Q is the predicate and x, y, and z are the 

variables.
What is the truth value of Q(2, 3, 5) ? true
What is the truth value of Q(0, 1, 2) ?
What is the truth value of Q(9, -9, 0) ?

false
true

A propositional function (predicate) becomes a 
proposition when all its variables are instantiated.



M.NAGASRAVANI,ASSIST.PROF, DEPT OF MCA,KMMIPS

31

Propositional Functions
Other examples of propositional functions 
Person(x), which is true if x is a person

Person(Socrates) = T 

CSCourse(x), which is true if x is a 
computer science course

CSCourse(CMSC201) = T

Person(dolly-the-sheep) = F

CSCourse(MATH155) = F
How do we say

All humans are mortal
One CS course
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Universal Quantification

Let P(x) be a predicate (propositional function).

Universally quantified sentence:
For all x in the universe of discourse P(x) is true.

Using the universal quantifier ∀:
∀x P(x)   “for all x P(x)” or “for every x P(x)”

(Note: ∀x P(x) is either true or false, so it is a 
proposition, not a propositional function.)



M.NAGASRAVANI,ASSIST.PROF, DEPT OF MCA,KMMIPS

33

Universal Quantification
Example: Let the universe of discourse be all 

people
S(x): x is a UMBC student.
G(x): x is a genius.

What does ∀x (S(x) → G(x)) mean ?
“If x is a UMBC student, then x is a genius.” or
“All UMBC students are geniuses.”
If the universe of discourse is all UMBC students, 

then the same statement can be written as
∀x G(x)
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Existential Quantification
Existentially quantified sentence:
There exists an x in the universe of discourse 

for which P(x) is true.

Using the existential quantifier ∃:
∃x P(x)    “There is an x such that P(x).”

      “There is at least one x such that P(x).”

(Note: ∃x P(x) is either true or false, so it is a 
proposition, but no propositional function.)
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Existential Quantification
Example: 
P(x): x is a UMBC professor.
G(x): x is a genius.

What does ∃x (P(x) ∧ G(x)) mean ?

“There is an x such that x is a UMBC professor 
and x is a genius.”

or
“At least one UMBC professor is a genius.”
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Quantification

Another example:
Let the universe of discourse be the real numbers.

What does ∀x∃y (x + y = 320) mean ?

“For every x there exists a y so that x + y = 320.”

Is it true?

Is it true for the natural numbers?

yes

no
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Disproof by Counterexample

A counterexample to ∀x P(x) is an object c so 
that P(c) is false. 

Statements such as ∀x (P(x) →  Q(x)) can be 
disproved by simply providing a 
counterexample.

Statement: “All birds can fly.”
Disproved by counterexample: Penguin.
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Negation

¬(∀x P(x)) is logically equivalent to ∃x (¬P(x)).

¬(∃x P(x)) is logically equivalent to ∀x (¬P(x)).

See Table 2 in Section 1.3.

This is de Morgan’s law for quantifiers
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Negation
Examples
Not all roses are red
     ¬∀x (Rose(x) → Red(x))
     ∃x (Rose(x) ∧ ¬Red(x))

Nobody is perfect
     ¬∃x (Person(x) ∧ Perfect(x))
     ∀x (Person(x) → ¬Perfect(x))
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Nested Quantifier
A predicate can have more than one variables.

– S(x, y, z): z is the sum of x and y
– F(x, y): x and y are friends

We can quantify individual variables in different 
ways
– ∀x, y, z (S(x, y, z) → (x <= z ∧ y <= z))
– ∃x ∀y ∀z (F(x, y) ∧ F(x, z) ∧ (y != z) → ¬F(y, z)
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Nested Quantifier
Exercise: translate the following English 

sentence into logical expression
“There is a rational number in between every 

pair of distinct rational numbers”

Use predicate Q(x), which is true when x 
is a rational number

∀x,y (Q(x) ∧ Q (y) ∧ (x < y) → 
   ∃u (Q(u) ∧ (x < u) ∧ (u < y)))
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Rules of Inference
Rules of inference provide the justification of the steps 

used in a proof.

One important rule is called modus ponens or the law of 
detachment. It is based on the tautology 
(p ∧ (p →  q)) → q. We write it in the following way:

p
p →  q
____
∴ q

The two hypotheses p and p →  q are 
written in a column, and the conclusion
below a bar, where ∴ means “therefore”.
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Rules of Inference

The general form of a rule of inference is:

  p1
  p2  .  .  .
  pn____
∴ q

The rule states that if p1 and p2 and … 
and pn are all true, then q is true as well.

Each rule is an established tautology of
      p1 ∧ p2 ∧ … ∧ pn → q

These rules of inference can be used in 
any mathematical argument and do not 
require any proof.
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Rules of Inference

 p
_____
∴ p∨q Addition

 p∧q
_____
∴ p Simplification

 p
 q
_____
∴ p∧q

Conjunction

 ¬q
 p → q 
_____
∴ ¬ p

Modus 
tollens

 p → q
 q → r 
_____
∴ p→ 
r 

Hypothetical 
syllogism
(chaining)

 p∨q
 ¬p
_____
∴ q 

Disjunctive 
syllogism
(resolution)
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Arguments
Just like a rule of inference, an argument consists 

of one or more hypotheses (or premises) and a 
conclusion. 

We say that an argument is valid, if whenever all 
its hypotheses are true, its conclusion is also 
true.

However, if any hypothesis is false, even a valid 
argument can lead to an incorrect conclusion. 

Proof: show that hypotheses →  conclusion is true 
using rules of inference
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Arguments
Example:
“If 101 is divisible by 3, then 1012 is divisible by 9. 

101 is divisible by 3. Consequently, 1012 is 
divisible by 9.”

Although the argument is valid, its conclusion is 
incorrect, because one of the hypotheses is 
false (“101 is divisible by 3.”).

If in the above argument we replace 101 with 102, 
we could correctly conclude that 1022 is divisible 
by 9.
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Arguments
Which rule of inference was used in the last 

argument?

p: “101 is divisible by 3.”
q: “1012 is divisible by 9.”

 p
 p → q 
_____
∴ q

Modus 
ponens

Unfortunately, one of the hypotheses (p) is false.
Therefore, the conclusion q is incorrect.
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Arguments

Another example:

“If it rains today, then we will not have a barbeque 
today. If we do not have a barbeque today, then 
we will have a barbeque tomorrow.
Therefore, if it rains today, then we will have a 
barbeque tomorrow.”

This is a valid argument: If its hypotheses are 
true, then its conclusion is also true.
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Arguments

Let us formalize the previous argument:

p: “It is raining today.”
q: “We will not have a barbecue today.”
r: “We will have a barbecue tomorrow.”

So the argument is of the following form:

 p → q
 q → r 
______
∴ P → r 

Hypothetical 
syllogism
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Arguments

Another example:

Gary is either intelligent or a good actor.
If Gary is intelligent, then he can count 

from 1 to 10.
Gary can only count from 1 to 3.
Therefore, Gary is a good actor.

i: “Gary is intelligent.”
a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”
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Arguments
i: “Gary is intelligent.”

a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”

Step 1:   ¬ c Hypothesis
Step 2:   i →  c           Hypothesis
Step 3:   ¬ i    Modus tollens Steps 1 & 2
Step 4:   a ∨ i Hypothesis
Step 5:   a Disjunctive Syllogism

Steps 3 & 4

Conclusion: a (“Gary is a good actor.”)
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Arguments
Yet another example:

If you listen to me, you will pass CS 320.
You passed CS 320.
Therefore, you have listened to me.

Is this argument valid?

No, it assumes ((p →  q) ∧ q) →  p.
This statement is not a tautology. It is false if p is 

false and q is true.
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Rules of Inference for Quantified Statements 
 ∀x P(x)__________
∴ P(c) if 

c∈U

Universal 
instantiation

P(c) for an arbitrary c∈U___________________
∴ ∀x P(x)

Universal 
generalization

 ∃x P(x)______________________
∴ P(c) for some element c∈U

Existential 
instantiation

P(c) for some element c∈U____________________
∴ ∃x P(x) 

Existential 
generalization
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Rules of Inference for Quantified Statements 

Example:

Every UMB student is a genius. 
George is a UMB student.
Therefore, George is a genius.

U(x): “x is a UMB student.”
G(x): “x is a genius.”
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Rules of Inference for Quantified Statements 

The following steps are used in the argument:

Step 1: ∀x (U(x) → G(x)) Hypothesis
Step 2: U(George) → G(George) Univ. instantiation 

using Step 1

 ∀x P(x)__________
∴ P(c) if 
c∈U

Universal 
instantiation

Step 3: U(George) Hypothesis
Step 4: G(George) Modus ponens

using Steps 2 & 3
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Proving Theorems

Direct proof:

An implication p → q can be proved by showing 
that if p is true, then q is also true.

Example: Give a direct proof of the theorem 
“If n is odd, then n2 is odd.”

Idea: Assume that the hypothesis of this 
implication is true (n is odd). Then use rules of 
inference and known theorems of math to show 
that q must also be true (n2 is odd).
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Proving Theorems

n is odd.

Then n = 2k + 1, where k is an integer.

Consequently, n2 = (2k + 1)2.
 = 4k2 + 4k + 1
 = 2(2k2 + 2k) + 1

Since n2 can be written in this form, it is odd.
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Proving Theorems
Indirect proof:
An implication p → q is equivalent to its 

contra-positive ¬q →  ¬p. Therefore, we can 
prove p → q by showing that whenever q is false, 
then p is also false.

Example: Give an indirect proof of the theorem 
“If 3n + 2 is odd, then n is odd.”

Idea: Assume that the conclusion of this 
implication is false (n is even). Then use rules of 
inference and known theorems to show that p 
must also be false (3n + 2 is even).
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Proving Theorems
n is even.

Then n = 2k, where k is an integer.

It follows that 3n + 2 = 3(2k) + 2 
= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

We have shown that the contrapositive of the 
implication is true, so the implication itself is 
also true (If 3n + 2 is odd, then n is odd). 
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Proving Theorems
Indirect Proof is a special case of proof by 

contradiction

Suppose n is even (negation of the conclusion).
Then n = 2k, where k is an integer.
It follows that 3n + 2 = 3(2k) + 2 

= 6k + 2
= 2(3k + 1)

Therefore, 3n + 2 is even.

However, this is a contradiction since 3n + 2 is given 
to be odd, so the conclusion (n is odd) holds.
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Another Example on Proof
Anyone performs well is either intelligent or a 

good actor.
If someone is intelligent, then he/she can count 

from 1 to 10.
Gary performs well.
Gary can only count from 1 to 3.
Therefore, not everyone is both intelligent and a 

good actor
   P(x): x performs well
   I(x): x is intelligent
   A(x): x is a good actor
   C(x): x can count from 1 to 10
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Another Example on Proof
Hypotheses:
1. Anyone performs well is either intelligent or a good 

actor.
       ∀x (P(x) → I(x) ∨ A(x))

2. If someone is intelligent, then he/she can count 
from 1 to 10.

       ∀x (I(x) → C(x) )
3. Gary performs well.
       P(G)

4. Gary can only count from 1 to 3.
       ¬C(G)
Conclusion: not everyone is both intelligent and a good actor
       ¬∀x(I(x) ∧ A(x))
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Another Example on Proof
Direct proof:
Step 1: ∀x (P(x) → I(x) ∨ A(x)) Hypothesis
Step 2: P(G) → I(G) ∨ A(G)        Univ. Inst. Step 1
Step 3: P(G)            Hypothesis
Step 4: I(G) ∨ A(G)  Modus ponens Steps 2 & 3
Step 5: ∀x (I(x) → C(x))    Hypothesis
Step 6: I(G) → C(G) Univ. inst. Step5
Step 7: ¬C(G)          Hypothesis
Step 8: ¬I(G)       Modus tollens Steps 6 & 7
Step 9: ¬I(G) ∨ ¬A(G) Addition Step 8
Step 10: ¬(I(G) ∧ A(G)) Equivalence  Step 9
Step 11: ∃x¬(I(x) ∧ A(x)) Exist. general. Step 10
Step 12: ¬∀x (I(x) ∧ A(x)) Equivalence  Step 11

Conclusion: ¬∀x (I(x) ∧ A(x)), not everyone is both 
intelligent and a good actor.
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Summary, Section 1.5
• Terminology (axiom, theorem, conjecture, 

argument, etc.)
• Rules of inference (Tables 1 and 2)
• Valid argument (hypotheses and conclusion)
• Construction of valid argument using rules of 

inference
– For each rule used, write down and the statements 

involved in the proof
• Direct and indirect proofs

– Other proof methods (e.g., induction, pigeon hole) 
will be introduced in later chapters


