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Climbing an Infinite Ladder

Suppose we have an infinite ladder:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the 

ladder, then we can reach the next rung.

From (1), we can reach the first rung. Then by 

applying (2), we can reach the second rung. 

Applying (2) again, the third rung. And so on.  

We can apply (2) any number of times to reach 

any particular rung, no matter how high up.

This example motivates proof by mathematical 

induction.
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Principle of Mathematical Induction

Principle of Mathematical Induction: To prove that P(n) is true for all positive integers n, 
we complete these steps:

• Basis Step: Show that P(1) is true.

• Inductive Step: Show that P(k) → P(k + 1)  is true for all positive integers k.

To complete the inductive step, assuming the inductive hypothesis that P(k) holds for an 
arbitrary integer k, show that  must P(k + 1) be true.

Climbing an Infinite Ladder Example:

• BASIS STEP: By (1), we can reach rung 1.

• INDUCTIVE STEP: Assume the inductive hypothesis that we can reach rung k. Then 
by (2), we can reach rung k + 1.

Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach every rung on the 
ladder.
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Important Points About Using 
Mathematical Induction

Mathematical induction can be expressed  as the rule of 
inference

where the domain is the set of positive integers.

In a proof by mathematical induction, we don’t assume that P(k) 
is true for all positive integers! We show that if we assume that 
P(k) is true, then P(k + 1) must also be true. 

Proofs by mathematical induction do not always start at the 
integer 1. In such a case, the basis step begins at a starting point 
b where b is an integer. We will see examples of this soon.
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Validity of Mathematical Induction

Mathematical induction is valid because of the well ordering property, which 
states that every nonempty subset of the set of positive integers has a least 
element (see Section 5.2 and Appendix 1). Here is the proof:

• Suppose that P(1) holds and P(k) → P(k + 1) is true for all positive integers k. 

• Assume there is at least one positive integer  n for which P(n) is false. Then 
the set S of positive integers for which P(n) is false is nonempty. 

• By the well-ordering property, S has a least element, say m.

• We know that m can not be 1 since  P(1) holds. 

• Since m is positive and greater than 1, m − 1 must be a positive integer. Since 
m − 1 < m, it is not in S, so P(m − 1) must be true. 

• But then, since the conditional P(k) → P(k + 1)  for every positive integer k 
holds, P(m) must also be true. This contradicts P(m) being false. 

•  Hence, P(n) must be true for every positive integer n.
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Remembering How Mathematical Induction 
Works

Consider  an infinite 

sequence  of dominoes, 

labeled 1,2,3, .  . ., where 

each domino is standing.

Let P(n) be the 

proposition that the nth 

domino is knocked over. 

We know that the first domino 

is knocked down, i.e., P(1) is 

true .

We also know that  if  

whenever the kth domino is 

knocked over, it knocks over 

the (k + 1)st domino, i.e, P(k) 

→ P(k + 1) is true for all 

positive integers k.

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.
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Proving a Summation Formula by 
Mathematical Induction

Example: Show that:

Solution:

• BASIS STEP: P(1) is true since

• INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.
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Conjecturing and Proving Correct a 
Summation Formula

Example: Conjecture and prove correct a formula for the sum of the first n positive odd integers. 
Then prove your conjecture.

Solution: We have:

• We can conjecture that the sum of the first n positive odd integers is

• We prove the conjecture is proved correct with mathematical induction.

• BASIS STEP: P(1) is true since

• INDUCTIVE STEP: P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k + 1) holds has well.

Inductive Hypothesis:

• So, assuming P(k), it follows that:

• Hence, we have shown that P(k + 1) follows from P(k). Therefore the sum of the first n 
positive odd integers is
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Proving Inequalities1

Example: Use mathematical induction to prove that
for all positive integers n.

Solution: Let P(n) be the proposition that

• BASIS STEP: P(1) is true since

• INDUCTIVE STEP: Assume P(k) holds, i.e., for an

arbitrary positive integer k.

• Must show that P(k + 1) holds. Since by the inductive 
hypothesis, it follows that:

Therefore holds for all positive integers n.
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Proving Inequalities2

Example: Use mathematical induction to prove that for every

integer n ≥ 4.

Solution: Let P(n) be the proposition that

• BASIS STEP: P(4) is true since

• INDUCTIVE STEP: Assume P(k) holds, i.e., for an arbitrary

integer k ≥ 4. To show that P(k + 1) holds:

Therefore, holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.
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Proving Divisibility Results

Example: Use mathematical induction to prove that is divisible

by 3, for every positive integer n.

Solution: Let P(n) be the proposition that is divisible by 3. 

• BASIS STEP: P(1) is true since which is divisible by 3.

• INDUCTIVE STEP: Assume P(k) holds, i.e., is divisible by 3, for

an arbitrary positive integer k. To show that P(k + 1) follows:

By the inductive hypothesis, the first term is divisible by 3
and the second term is divisible by 3 since it is an integer multiplied 
by 3. So by part (i) of Theorem 1 in Section 4.1 , is
divisible by 3.

Therefore, is divisible by 3, for every integer positive integer n.
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Number of Subsets of a Finite Set1

Example: Use mathematical induction to show that if S is a 
finite set with n elements, where n is a nonnegative integer, 
then S has subsets.

(Chapter 6 uses combinatorial methods to prove this result.)

Solution: Let P(n) be the proposition that a set with n 
elements has subsets.

• Basis Step: P(0) is true, because the empty set has only 
itself as a subset and

• Inductive Step: Assume P(k) is true for an arbitrary 
nonnegative integer k.
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Number of Subsets of a Finite Set2

Inductive Hypothesis: For an arbitrary nonnegative integer k, every set 
with k elements has subsets.

Let T be a set with k + 1 elements. Then T = S ∪ {a}, where a ∈ 
T and S = T − {a}.  Hence

For each subset X of S, there are exactly two subsets of T, i.e., X 
and X ∪ {a}.

By the inductive hypothesis S  has subsets. Since there are two
subsets of T  for each subset of S, the number of subsets of T  is
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Tiling Checkerboards1

Example: Show that every checkerboard with one square removed
can be tiled using right triominoes.

A right triomino is an L-shaped tile which covers 
three squares at a time.

Solution: Let P(n) be the proposition that every checkerboard with
one square removed can be tiled using right triominoes. Use mathematical 
induction to prove that P(n) is true for all positive integers n.

• BASIS STEP:  P(1) is true, because each of the four 2 × 2 checkerboards with one 
square removed can be tiled using one right triomino.

• INDUCTIVE STEP:  Assume that  P(k) is true for every checkerboard, for
some positive integer k.
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Tiling Checkerboards2

Inductive Hypothesis: Every checkerboard, for some positive integer
k,  with one square removed can be tiled using right triominoes.

Consider a checkerboard with one square removed. Split this checkerboard
into four checkerboards of size by dividing it in half in both directions.

Remove a square from one of the four checkerboards. By the inductive
hypothesis, this board can be tiled.  Also by the inductive hypothesis, the other three 
boards can be tiled with the square from the corner of the center of the original board 
removed. We can then cover the three adjacent squares with a triomino. 

Hence, the entire checkerboard with one square removed can be tiled 
using right triominoes.
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An Incorrect “Proof” by Mathematical 
Induction1

Example: Let P(n) be the statement that every set of n lines in the 
plane, no two of which are parallel, meet in a common point. Here 
is a “proof” that P(n) is true for all positive integers n ≥ 2.  

• BASIS STEP: The statement P(2) is true because any two lines in the 
plane that are not parallel meet in a common point.

• INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) 
is true for the positive integer  k ≥ 2, i.e., every set of k lines in the 
plane, no two of which are parallel, meet in a common point.

• We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if every set 
of k lines in the plane, no two of which are parallel, k ≥ 2, meet in a 
common point, then every set of k + 1 lines in the plane, no two of 
which are parallel, meet in a common point.
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An Incorrect “Proof” by Mathematical 
Induction2

Inductive Hypothesis: Every set of k lines in the plane, where k ≥ 2, no 
two of which are parallel, meet in a common point.

Consider a set  of k + 1 distinct lines in the plane, no two parallel. By the 
inductive hypothesis, the first k of these lines must meet in a common point

By the inductive hypothesis, the last k of these lines meet in a common point

If are different points, all lines containing both of them must be the

same line since two points determine a line. This contradicts the assumption 

that the lines are distinct. Hence, lies on all k + 1 distinct lines, and
therefore P(k + 1) holds. Assuming that  k ≥2, distinct lines meet in a common 
point, then every k + 1 lines meet in a common point.

There must be an error in this proof  since the conclusion is absurd. But where is 
the error?

• Answer: P(k)→ P(k + 1) only holds for k ≥3. It is not the case that P(2) implies P(3). 
The first two lines must meet in a common point and the second two must meet in
a common point They do not have to be the same point since only the second line
is common to both sets of lines.
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 Guidelines:
Mathematical Induction Proofs

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for all n ≥ b, P(n)” for a fixed 
integer b. 

2. Write out the words “Basis Step.” Then show that P(b) is true, taking care that the 
correct value of b is used. This completes the first part of the proof.

3. Write out the words “Inductive Step”.

4. State, and clearly identify, the inductive hypothesis, in the form “assume that P(k) is true 
for an arbitrary fixed integer k ≥ b.”

5. State what needs to be proved under the assumption that the inductive hypothesis is 
true. That is, write out what P(k + 1) says.

6. Prove the statement P(k + 1) making use the assumption P(k). Be sure that your proof is 
valid for all integers k with k ≥ b, taking care that the proof works for small values of k, 
including k = b.

7. Clearly identify the conclusion of the inductive step, such as by saying “this completes 
the inductive step.”

8. After completing the basis step and the inductive step, state the conclusion, namely, by 
mathematical induction, P(n) is true for all integers n with n ≥ b.
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Strong Induction and 
Well-Ordering

20
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Strong Induction

Strong Induction: To prove that P(n) is true for all positive 
integers n, where P(n) is a propositional function, complete 
two steps:

• Basis Step: Verify that the proposition P(1) is true.

• Inductive Step: Show the conditional statement

holds for all positive integers k.

Strong Induction is sometimes called 
the second principle of mathematical 
induction or complete induction.
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Strong Induction and the 
Infinite Ladder

Strong induction tells us that we can reach all rungs if:

1. We can reach the first rung of the ladder.

2. For every integer k, if we can reach the first k rungs, 
then we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:

• BASIS STEP:  P(1) holds

• INDUCTIVE STEP:  Assume P(1) ∧ P(2) ∧ ∙ ∙ ∙ ∧ P(k)
holds for an arbitrary integer k, and show that
P(k + 1) must also hold.

We will have then shown by strong induction that for
every positive integer n, P(n) holds, i.e., we can
reach the nth rung of the ladder.
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Proof using Strong Induction 1

Example: Suppose we can reach the first and second rungs of an 
infinite ladder, and we know that if we can reach a rung, then we 
can reach two rungs higher. Prove that we can reach every rung. 
(Try this with mathematical induction.)

Solution: Prove the result using strong induction.

• BASIS STEP: We can reach the first step.

• INDUCTIVE STEP:  The inductive hypothesis is that we can 
reach the first k rungs, for any k ≥ 2. We can reach the
(k + 1)st rung since we can reach the (k − 1)st rung by the 
inductive hypothesis.

• Hence, we can reach all rungs of the ladder.
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Which Form of Induction Should Be Used?

We can always use strong induction instead of  

mathematical induction. But there is no reason to use it 

if it is simpler to use mathematical induction. (See page 

335 of text.)

In fact, the principles of mathematical induction, strong 

induction, and the well-ordering property are all 

equivalent. (Exercises 41-43)

Sometimes it is clear how to proceed using one of the 

three methods, but not the other two.
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Completion of the proof of the 
Fundamental Theorem of Arithmetic

Example: Show that if n is an integer greater than 1, then n can be written as the 
product of primes.

Solution: Let P(n) be the proposition that n can be written as a product of primes.

BASIS STEP: P(2) is true since 2 itself is prime.

INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all integers j with        
2 ≤ j ≤ k. To show that P(k + 1) must be true under this assumption, two cases 
need to be considered:

• If k + 1  is prime, then P(k + 1) is true.

• Otherwise, k + 1 is composite and can be written as the product of two positive 
integers a and b with By the inductive hypothesis a and b can be
written as the product of primes and therefore k + 1 can also be written as the 
product of those primes.

Hence, it has been shown that every integer greater than 1 can be written as the 
product of primes.

(uniqueness proved in Section 4.3)
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Proof using Strong Induction 2

Example: Prove that every amount of postage of 12 cents or more can be 
formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can be formed 
using 4-cent and 5-cent stamps.

BASIS STEP: P(12), P(13), P(14), and P(15) hold.

• P(12) uses three 4-cent stamps.

• P(13) uses two 4-cent stamps and one 5-cent stamp.

• P(14) uses one 4-cent stamp and two 5-cent stamps.

• P(15) uses three 5-cent stamps.

INDUCTIVE STEP: The inductive hypothesis  states that P(j) holds for 12 ≤ j 
≤ k, where k ≥ 15.  Assuming the inductive hypothesis,  it can be shown 
that P(k + 1) holds. 

Using the inductive hypothesis, P(k − 3) holds since k − 3 ≥ 12.  To form 
postage of  k + 1 cents, add a 4-cent stamp to the postage for k − 3 cents. 
Hence, P(n) holds for all n ≥ 12.
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Proof of Same Example using Mathematical 
Induction

Example: Prove that every amount of postage of 12 cents or more can be 
formed using just 4-cent and 5-cent stamps.

Solution: Let P(n) be the proposition that postage of n cents can be formed 
using 4-cent and 5-cent stamps.

BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps.

INDUCTIVE STEP: The inductive hypothesis P(k) for any positive integer k is 
that postage of k cents can be formed using 4-cent and 5-cent stamps. To  
show P(k + 1) where k ≥ 12 , we consider two cases:

• If at least one 4-cent stamp has been used, then a 4-cent stamp can be replaced 
with a 5-cent stamp to yield a total of k + 1 cents.

• Otherwise, no 4-cent stamp have been used and at least three 5-cent stamps 
were used. Three 5-cent stamps can be replaced by four 4-cent stamps to yield 
a total of k + 1 cents.

Hence, P(n) holds for all n ≥ 12.
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Well-Ordering Property1

Well-ordering property: Every nonempty set of nonnegative 
integers has a least element.

The well-ordering property is one of the axioms of the positive 
integers listed in Appendix 1.

The well-ordering property can be used directly in proofs, as the 
next example illustrates.

The well-ordering property can be generalized.

Definition: A set is well ordered if every subset has a least element.

• N is well ordered under ≤.

• The set of finite strings over an alphabet using lexicographic ordering is 
well ordered.

We will see a generalization of induction to sets other than the 
integers in the next section.
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Well-Ordering Property2

Example: Use the well-ordering property to prove the division 
algorithm, which states that if a is an integer and d is a positive
integer, then there are unique integers q and r with 0 ≤ r < d, such that
a = dq + r.

Solution: Let S be the set of nonnegative integers of the form a − dq, 
where q is an integer. The set is nonempty since −dq can be made as 
large as needed. 

• By the well-ordering property, S has a least element
The integer r is nonnegative. It also must be the case that r < d. If it 
were not, then there would be a smaller nonnegative element in S, 
namely,

• Therefore, there are integers q and r with 0 ≤ r < d.

(uniqueness of q and r is Exercise 37)
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Recursive Definitions and 
Structural Induction
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Recursively Defined Functions1

Definition:  A recursive or inductive definition  of a 
function consists of two steps.

• BASIS STEP: Specify the value of the function at zero.

• RECURSIVE STEP: Give a rule for finding its value at  
an integer from its values at smaller integers.

A function f(n)  is the same as a sequence
where where f(i) = This was done using recurrence

relations in Section 2.4.
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Recursively Defined Functions2

Example:  Suppose f is defined by:

Find
Solution:

Example:  Give a recursive definition of the factorial function

Solution:
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Recursively Defined Functions3

Example: Give a recursive definition of:

Solution: The first part of the definition is

The second part is
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Fibonacci Numbers 1

Fibonacci 
(1170- 1250)

Example : The Fibonacci numbers are defined as 
follows:

Find
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Fibonacci Numbers 2

Example 4: Show that whenever where

Solution:  Let P(n) be the statement

Use strong induction to show that P(n) is true whenever  n ≥ 3.

BASIS STEP: P(3) holds since

P(4) holds since

INDUCTIVE STEP: Assume that P(j) holds, i.e., for all integers j with

3 ≤ j ≤ k, where k ≥ 4. Show that P(k + 1) holds, i.e.,

• Since (because α is a solution of − x − 1 = 0),

• By the inductive hypothesis, because k ≥ 4  we have

• Therefore, it follows that

Why does this 
equality hold?

• Hence, P(k + 1) is true.
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Lamé’s Theorem 1

Gabriel Lamé 
(1795-1870)

Lamé’s Theorem: Let a and b be positive integers with a ≥ b. 
Then the number of divisions used by the Euclidian algorithm to
find gcd(a,b) is less than or equal to five times the number of
decimal digits in b. 

Proof: When we use the Euclidian algorithm to find gcd(a,b) with a ≥ b,

• n divisions  are used to obtain
(with

):
• Since each quotient is

at least 1 and
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Lamé’s Theorem 2

It follows that if n divisions are used by the Euclidian algorithm to find 
gcd(a,b) with a ≥ b, then By Example 4, for n > 2,

where Therefore,

Because Hence,

Suppose that  b has k decimal digits. Then It

follows that n − 1 < 5k and since k is an integer, n ≤  5k.

As a consequence of Lamé’s Theorem, O(log b) divisions are used by 
the Euclidian algorithm to find gcd(a,b) whenever a > b.

• By Lamé’s Theorem, the number of divisions needed to find gcd(a,b) with 
a > b is less than or equal to

since the number of decimal
digits in b (which equals is less than or equal to

Lamé’s Theorem was the first result in computational complexity.

37



M,NAGA SRAVANI, ASSIST.PROF

Recursively Defined Sets and Structures 1

Recursive definitions of sets have two parts:

• The basis step specifies an initial collection of elements.

• The recursive step gives the rules for forming new elements in the set from 
those already known to be in the set.

Sometimes the recursive definition has an exclusion rule, which 
specifies that the set contains nothing other than those 
elements specified in the basis step and generated by 
applications of the rules in the recursive step. 

We will always assume that the exclusion rule holds, even if it is 
not explicitly mentioned. 

We will later develop a form of induction, called structural 
induction, to prove results about recursively defined sets.
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Recursively Defined Sets and Structures 2

Example :  Subset of Integers  S:

BASIS STEP: 3 ∊ S.

RECURSIVE STEP: If x ∊ S and y ∊ S, then x + y is in S.

Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.

Example: The natural numbers N.

BASIS STEP: 0 ∊ N.

RECURSIVE STEP: If n is in N, then n + 1 is in N.  

Initially 0 is in S, then 0 + 1 = 1, then 1 + 1 = 2, etc.
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Strings

Definition: The set  Σ* of strings over the alphabet Σ:

BASIS STEP: λ ∊ Σ* (λ is the empty string)

RECURSIVE STEP: If w is in Σ* and x is in Σ, then wx ∊ Σ*.

Example: If Σ = {0,1}, the strings in in Σ* are the set of 
all bit strings, λ,0,1, 00,01,10, 11, etc.

Example:  If Σ = {a,b}, show that a a b is in Σ*.

• Since λ ∊ Σ* and a ∊ Σ, a ∊ Σ*.

• Since a ∊ Σ* and a ∊ Σ, a a ∊ Σ*.

• Since a a ∊ Σ* and b ∊ Σ, a a b ∊ Σ*.
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String Concatenation

Definition: Two strings can be combined via the 
operation of concatenation. Let Σ be a set of symbols 
and Σ* be the set of strings formed from the symbols in 
Σ. We can define the concatenation of two strings, 
denoted by ·, recursively as follows.

BASIS STEP: If w ∊ Σ*, then

RECURSIVE STEP: If and x ∊ Σ, then

Often is written as

If = abra  and = cadabra, the concatenation

= abracadabra.
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Length of a String

Example: Give a recursive definition of l(w), the 
length of the string w.

Solution: The length of a string can be 
recursively defined by:
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Balanced Parentheses

Example: Give a recursive definition of the set  
of balanced parentheses P.

Solution:

BASIS STEP: ∊ P

RECURSIVE STEP: If w ∊ P, then w ∊ P, ∊ P and
w ∊ P.

Show that is in P.

Why is not in P?
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Well-Formed Formulae in Propositional 
Logic

Definition: The set of well-formed formulae in 
propositional logic involving T, F, propositional 
variables, and operators from the set {¬,∧,∨,→,↔}.

BASIS STEP:  T,F, and s, where s is a propositional variable, are 
well-formed formulae.

RECURSIVE STEP: If E and F are well formed formulae, then (¬ E),  
(E ∧ F), (E ∨ F), (E → F), (E ↔ F), are well-formed formulae.

Examples: is a well-formed formula.

pq ∧  is not a  well formed 
formula.
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Rooted Trees

Definition: The set of rooted trees, where a rooted tree 
consists of a set of vertices containing a distinguished 
vertex called the root, and edges connecting these 
vertices, can be defined recursively by these steps:

BASIS STEP:  A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that are disjoint rooted
trees with roots respectively. Then the graph
formed by starting with a root r, which is not in any of the rooted 
trees and adding an edge from r to each
of the vertices is also a rooted tree.

45



M,NAGA SRAVANI, ASSIST.PROF

Building Up Rooted Trees

 Trees are studied extensively in Chapter 11.

 Next we look at a special type of tree, the full binary tree.
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Full Binary Trees 1

Definition: The set of full binary trees can be 
defined recursively by these steps.

BASIS STEP: There is a full binary tree consisting of 
only a single vertex r.

RECURSIVE STEP: If are disjoint full binary
trees, there is a full binary tree, denoted by
consisting of a root r together with edges 

connecting the root to each of the roots of the left 

subtree and the right subtree
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Building Up Full Binary Trees
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Induction and Recursively Defined Sets

Example:  Show that the set S defined  by specifying that 3 ∊ S and 
that if x ∊ S and y ∊  S, then x + y is in S, is the set of all positive 
integers that are multiples of 3.
Solution: Let A be the set of all positive integers divisible by 3. To 
prove that A = S, show that A is a subset of S and S is a subset of A. 
• A⊂ S: Let P(n) be the statement that 3n belongs to S. 

BASIS STEP: = 3 ∊ S, by the first part of recursive definition.

INDUCTIVE STEP: Assume P(k) is true. By the second part of the recursive definition, if 
3k ∊ S, then since 3 ∊ S, 3k + 3 = 3(k + 1) ∊ S. Hence, P(k + 1) is true. 

• S ⊂ A:
BASIS STEP: 3 ∊ S by the first part of recursive definition, and 3 =
INDUCTIVE STEP:  The second part of the recursive definition adds x +y to S, if both x 
and y are in S. If x and y are both in A, then both x and y are divisible by 3. By part (i) 
of Theorem 1 of Section 4.1, it follows that  x + y is divisible by 3. 

We used mathematical induction to prove a result about a recursively defined set. Next  
we study a more direct form induction for proving results about recursively defined sets.

49



M,NAGA SRAVANI, ASSIST.PROF

Structural Induction

Definition: To prove a property of the elements of a 

recursively defined set, we use  structural induction. 

BASIS STEP: Show that the result holds for all elements specified 

in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for each of 

the elements used to construct new elements in the 

recursive step of the definition, the result holds for these 

new elements. 

The validity of structural induction can be shown to 

follow from the principle of mathematical induction.
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Full Binary Trees 2

Definition: The height h(T) of a full binary tree T is defined 
recursively as follows:

• BASIS STEP: The height of a full binary tree T consisting of only a root r is 
h(T) = 0.

• RECURSIVE STEP: If are full binary trees, then the full binary tree
has height

The number of vertices  n(T) of a full binary tree T satisfies the 
following recursive formula:

• BASIS STEP: The number of vertices of a full binary tree T consisting of 
only a root r is n(T) = 1.

• RECURSIVE STEP: If are full binary trees, then the  full binary tree
has the number of vertices
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Structural Induction and Binary Trees

Theorem: If T is a full binary tree, then

Proof: Use structural induction.

• BASIS  STEP: The result holds for a full binary tree consisting only of a 
root, Hence,

• RECURSIVE STEP:  Assume and also

whenever are full binary trees.
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Generalized Induction 1

Generalized induction is used to prove results about 
sets other than the integers that have the well-ordering 
property. (explored in more detail in Chapter 9)

For example, consider an ordering on N × N, ordered 
pairs of nonnegative integers. Specify that is less
than or equal to if either and

This is called the lexicographic ordering.

Strings are also commonly ordered by a lexicographic 
ordering.

The next example uses generalized induction to prove a 
result about ordered pairs from N × N.
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Generalized Induction 2

Example: Suppose that is defined for

by and

Show that is defined for all

Solution: Use generalized induction.
BASIS STEP:

INDUCTIVE STEP: Assume that

whenever( ̍m′,n′)  is less than (m,n) in the lexicographic ordering of  N × 
N . 
• If n = 0, by the inductive hypothesis we can conclude

• If n > 0, by the inductive hypothesis we can conclude 
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Recursive Algorithms 
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Recursive Algorithms

Definition: An algorithm is called recursive if it 

solves a problem by reducing it to an instance of 

the same problem with smaller input.

For the algorithm to terminate, the instance of 

the problem must eventually be reduced to some 

initial case for which the solution is known.
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Recursive Factorial Algorithm

Example: Give a recursive algorithm for 
computing where n is a nonnegative integer.

Solution: Use the recursive definition of the 
factorial function.

procedure factorial(n: nonnegative integer)

if  n = 0 then return 1

else  return

57



M,NAGA SRAVANI, ASSIST.PROF

Recursive Exponentiation Algorithm

Example: Give a recursive algorithm for 
computing where a is a nonzero real number
and  n is a nonnegative integer.

Solution: Use the recursive definition of

procedure power(a: nonzero real number, n: nonnegative 
integer)

if  n = 0 then return 1

else  return
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Recursive GCD Algorithm

Example: Give a recursive algorithm for computing the 
greatest common divisor of two nonnegative integers  a 
and b with a < b. 

Solution: Use the reduction

gcd(a,b) = gcd(b mod a, a) 

and the condition gcd(0,b) = b when b > 0.

procedure gcd(a,b: nonnegative integers 

with a < b)

if  a = 0 then return b

else  return  gcd (b mod  a, a)

{output is gcd(a, b)}
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Recursive Modular Exponentiation 
Algorithm

Example: Devise a  a recursive algorithm for computing
mod  m, where b, n, and m are integers with  m ≥ 2,

n ≥ 0, and 1≤ b ≤ m. 

Solution: (see text for full explanation)

procedure mpower(b,m,n: integers with b > 0 and m ≥ 2,  n ≥ 0)
if  n = 0 then 

return 1
else  if  n is even  then 

return mpower

mod  m
else

return mod  m
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Recursive Binary Search Algorithm

Example: Construct a recursive version of a binary search 
algorithm. 

Solution: Assume we have an increasing sequence of

integers. Initially i is 1 and j is n. We are searching for x.

procedure binary search(i, j, x : integers,  1≤ i ≤ j ≤n)

if then
return m

else  if  ( and   i < m) then
return binary search(i,m−1,x)

else  if  ( and   j >m) then
return binary search(m+1,j,x)

else return 0
{output is location of x in if it appears, otherwise 0}

61



M,NAGA SRAVANI, ASSIST.PROF

Proving Recursive Algorithms Correct

Both mathematical and strong induction are useful techniques to show that 
recursive algorithms always produce the correct output.

Example: Prove that the algorithm for computing the powers of real numbers 
is correct.

procedure power(a: nonzero real number, n: nonnegative integer)

if  n = 0 then return 1

else  return

 Solution: Use mathematical induction on the exponent n.

BASIS STEP: for every nonzero real number a, and power(a,0) = 1.

INDUCTIVE STEP: The inductive hypothesis is that power(a,k) = for all a ≠0.
Assuming the inductive hypothesis, the algorithm correctly computes

since
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Merge Sort 1

Merge Sort works by iteratively splitting a list (with an 

even number of elements) into two sublists of equal 

length until each sublist has one element.

Each sublist is represented by a balanced binary tree.

At each step a pair of sublists is successively merged 

into a list with the elements in increasing order. The 

process ends when all the sublists have been merged.

The succession of merged lists is represented by a 

binary tree.
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Merge Sort 2

Example: Use merge sort to put the list
8,2,4,6,9,7,10, 1, 5, 3
into increasing order.

Solution:
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Recursive Merge Sort 1

Example: Construct a recursive merge sort algorithm. 

Solution: Begin with the list of n elements L.

procedure  mergesort

if  n  > 1 then

{L is now sorted into elements in increasing order}
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Recursive Merge Sort 2

Subroutine merge, which merges two sorted lists.

procedure  merge( :sorted lists)

while are both nonempty

remove smaller of first elements of from its list;

put at the right end of L

if this removal makes one list empty 

then remove all elements from the other list and append them to L

return L {L is the merged list with the elements in increasing order}

Complexity of Merge: Two sorted lists with m elements 
and n elements can be merged into a sorted list using 
no more than m + n − 1 comparisons.
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Merging Two Lists

Example: Merge the two lists 2,3,5,6 and 1,4.

Solution:
TABLE 1  Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.

First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2

2 3 5 6 4 1 2 < 4

3 5 6 4 1 2 3 < 4

5 6 4 1 2 3 4 < 5

5 6 1 2 3 4

1 2 3 4 5 6
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Complexity of Merge Sort 1

Complexity of Merge Sort:  The number of comparisons needed 
to merge  a list with n elements is O(n log n).

For simplicity, assume that n is a power of 2, say

At the end of the splitting process, we have a binary tree with m 
levels, and lists with one element at level m.

The merging process begins at level m with the pairs of lists
with one element combined into lists of two elements. Each

merger takes two one comparison.

The procedure continues, at each level (k = m,  m−1, 
m−1,  . . . ,3,2,1) lists with elements are merged into

lists, with elements at level k−1.

• We know (by the complexity of the merge subroutine) that  each 
merger takes at most comparisons.
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Complexity of Merge Sort 2

Summing over the number of comparisons at each level, shows that 

because m = log n and

(The expression in the formula above is 

evaluated as
using the formula for the sum of the

terms of a geometric progression, from Section 2.4.)

In Chapter 11, we’ll see that the fastest comparison-based 
sorting algorithms have O(n log n) time complexity. So, merge 
sort achieves the best possible big-O estimate of time 
complexity.
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Accessibility Content: 
Text Alternatives for Images
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Climbing an Infinite Ladder – Text Alternative

There is a man climbing an infinite ladder, the steps of which are 

numbered with natural numbers from the bottom. The man can 

reach step k plus one if he can reach step k.
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Remembering How Mathematical Induction 
Works – Text Alternative

There are dominoes numbered with natural numbers. The 

domino with number one falls on the domino with number two, 

and the domino with number two falls on the domino with 

number three, etc.
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Number of Subsets of a Finite Set 2 – Text 
Alternative

There is field S with circle X inside. S has two arrows. The first 

one is from S to field T that has circle X and element A inside, the 

second arrow is from S to field T that has a circle named X union 

left brace A right brace inside, which has element A inside.
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Tiling Checkerboards 1 – Text Alternative

There are four checkerboards of the size 2 times 2 with one 

square removed each. The first checkerboard does not have the 

left bottom square. The second checkerboard does not have the 

right bottom square. The third checkerboard does not have the 

left top square, and the fourth one does not have the right top 

square. In each case, the remaining squares form right triomino.
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Tiling Checkerboards 2 – Text Alternative

There are four squares forming together a large square. The right 

bottom square has a small shaded square inside.

There are four squares forming together a large square, each one 

has small shaded square inside. In the left top square, the small 

square is in the bottom right corner. In the right top square, the 

small square is in the bottom left corner. In the left bottom 

square, the small square is in the top right corner. Thus, these 

three small squares form a right triomino.
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Building Up Rooted Trees – Text Alternative

There are 3 steps of building up rooted trees shown. Basic step 

contains one vertex which is a root. The first step contains 

several vertices that are added to the next level. All these 

vertices are connected to the root. At the second step, the 

vertices of the previous level are the roots for the added vertices 

of the next level.
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Building Up Full Binary Trees – Text Alternative

There are three steps of building up full binary trees shown. The 

basic step contains one vertex on the first level which is the root. 

Each next level is located below the previous one. At the first 

step, two vertices are added to the next level. They are 

connected to the root forming the right and left branches. At the 

second step, the vertices of the second level are the roots for the 

added vertices of the third level. The right and the left branches 

can be formed in several ways: only from the left vertex, only 

from the right, or from both vertices.
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Merge Sort 2 – Text Alternative

There is a binary balanced tree at the top. Its root consists of numbers 8, 2, 4, 
6, 9, 7, 10, 1, 5, and 3. At the first step, there are two branches, the left leads 
to the vertex containing elements 8, 2, 4, 6, and 9. The right one leads to the 
vertex containing elements 7, 10, 1, 5, and 3. Two branches lead from the 
vertex 8, 2, 4, 6, 9 . The left one leads to the vertex with the elements 8, 2, 4. 
The right one leads to the vertex with the elements 6 and 9. Two branches 
also lead from the vertex 7, 10, 1, 5, and 3. The left one leads to the vertex 
with the elements 7, 10, 1. The right one leads to the vertex with the 
elements 5 and 3. Each of the four vertices of the previous level has two 
branches leading to the vertices of the next level: from 8, 2, 4 to 8, 2 and 4, 
from 6, 9 to 6 and 9, from 7, 10, 1 to 7, 10 and 1, from 5, 3 to 5 and 3. At the 
next level there are branches from 8, 2 to 8 and 2, and from 7, 10 to 7 and 10. 
At the bottom of the picture there is a similar tree, but it is turned upside 
down. In such vertices where there is more than one element, elements are 
written in the increasing order from left to right.
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