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Applications of Recurrence
Relations
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Recurrence Relations (recalling
definitions )

Definition: A recurrence relation for the sequence {a,} is
an equation that expresses a_in terms of one or more
of the previous terms of the sequence, namely, g, a,,
..., a._,,for all integers n with n=n,, where n, is a
nonnegative integer.

* A sequence is called a solution of a recurrence relation if its
terms satisfy the recurrence relation.

* The initial conditions for a sequence specify the terms that
precede the first term where the recurrence relation takes
effect.
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Rabbits and the Fibonacci Numbers.

Example: A young pair of rabbits (one of each gender) is
placed on an island. A pair of rabbits does not breed
until they are 2 months old. After they are 2 months old,
each pair of rabbits produces another pair each month.
Find a recurrence relation for the number of pairs of
rabbits on the island after n months, assuming that
rabbits never die.

This is the original problem considered by Leonardo
Pisano (Fibonacci) in the thirteenth century.
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Rabbits and the Fibonacci Numbers.

Reproducing pairs Young pairs Reproducing | Young | Total
(at least two months old) (less than two months old) Month pairs pairs | pairs
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Modeling the Population Growth of Rabbits on

an Island
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Rabbits and the Fibonacci Numbers:

Solution: Let f be the number of pairs of rabbits after n months.
* There areis f, = 1pairs of rabbits on the island at the end of the first month.
* We also have f, = 1because the pair does not breed during the first month.

* To find the number of pairs on the island after n months, add the number on
the island after the previous month, f, ,,and the number of newborn pairs,
which equals f,_,,because each newborn pair comes from a pair at least two

months old.

Consequently the sequence {fn} satisfies the recurrence relation
f, = f,,+f ,for n=3 with the initial conditions f,=1and f, = 1.

The number of pairs of rabbits on the island after n months is given
by the nth Fibonacci number.
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The Tower of Hanoi.

In the late nineteenth century, the French mathematician
Edouard Lucas invented a puzzle consisting of three pegs
on a board with disks of different sizes. Initially all of the

disks are on the first peg in order of size, with the largest
on the bottom.

Rules: You are allowed to move the disks one at a time
from one peg to another as long as a larger disk is never
placed on a smaller.

Goal: Using allowable moves, end up with all the disks
on the second peg in order of size with largest on the

bottom.
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The Tower of Hanoi.
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The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi.

Solution: Let {H, } denote the number of moves needed to solve the
Tower of Hanoi Puzzle with n disks. Set up a recurrence relation for

the sequence {H 1 Begin with n disks on peg 1. We can transfer the top
n —1 disks, following the rules of the puzzle, to peg 3 using H_ _, moves.

|
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First, we use 1 move to transfer the largest disk to the second peg.

Then we transfer the n =1 disks from peg 3 to peg 2 using H,_
additional moves. This can not be done in fewer steps. Hence,

H,=2H , +1.

The initial condition is H, =1 since a single disk can be

transferred from peg 1 to peg 2 in one move.
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The Tower of Hanoi.

We can use an iterative approach to solve this recurrence relation by
repeatedly expressing H_in terms of the previous terms of the sequence.

H =2H ,+1
=2QH ,+1)+1=2’H , +2+1
=2"2H_,+1)+2+1=2"H ,+2°+2+1
I
=2"TH 4272 4 L 4241
=2"T 4242 L 4241 becauseH, =1

=2"-1 using the formula for the sum of the terms of a geometric series

There was a myth created with the puzzle. Monks in a tower in Hanoi are
transferring 64 gold disks from one peg to another following the rules of the puzzle.
They move one disk each day. When the puzzle is finished, the world will end.
Using this formula for the 64 gold disks of the myth,

2% —1=18,446, 744,073, 709,551,615
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days are needed to solve the puzzle, which is more than
500 billion years.

Reve’s puzzle (proposed in 1907 by Henry Dudeney) is
similar but has 4 pegs. There is a well-known unsettled
conjecture for the minimum number of moves needed
to solve this puzzle. (see Exercises 38-45)
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Counting Bit Strings.

Example 3: Find a recurrence relation and give initial conditions for the number
of bit strings of length n without two consecutive Os. How many such bit strings
are there of length five?

Solution: Let g_denote the number of bit strings of length n without two
consecutive Os. To obtain a recurrence relation for {an} note that the number of

bit strings of length n that do not have two consecutive Os is the number of bit
strings ending with a 0 plus the number of such bit strings ending with a 1.

Now assume that n = 3.

* The bit strings of length n ending with 1 without two consecutive Os are the bit
strings of length n —1 with no two consecutive Os with a 1 at the end. Hence, there
are g__, such bit strings.

Number of bit strings

* The bit strings of length n ending with O o length 1 with o
without two consecutive Os are the bit Lo | Any g ortenginn 1 wia ‘ :
strings of length n =2 with no two —_—
consecutive Os with 10 at the end. Hence,
there are a,_, such bit strings.

We conclude that a, = natk sRAVARI, ASSIST.PROF
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Bit Strings.

The initial conditions are:
. g, =2,since both the bit strings 0 and 1 do not have consecutive Os.

a, = 3, since the bit strings 01, 10, and 11 do not have consecutive
Os, while 00 does.

To obtain g_, we use the recurrence relation three times to
find that:

a,=a, +a, =3+2=5.
* a,=0, +a,=5+3=8.
* a,=a, +a, =8+5=13.

Note that {an} satisfies the same recurrence relation as the Fibonacci
sequence. Since @, = f3 and a, = f4, we conclude that a = fn+2_
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Counting the Ways to Parenthesize a
Product

Example: Find a recurrence relation for C_, the number of ways to parenthesize
the product of n + 1 numbers, x_ - x, - x, ----- X _,to specify the order of
multiplication. For example, C, = 5, since all the possible ways to parenthesize 4

numbers are

((Xo -X1)°X2)~X3, (Xo '(Xl 'Xz))'x3' (Xo °X1)°(X2 'Xs)'xo '((Xl °X2)-X3), Xo '(Xl '(Xz 'Xs))
Solution: Note that however parentheses are inserted in x, - x, - x, -+ X ,o0ne
“.” operator remains outside all parentheses. This final operator appears
between two of the n + 1 numbers, say x, and x, ,. Since there are C, ways to
insert parentheses in the product x, - x, - x, -+ x,and C_, , ways to insert
parentheses in the product x, , - X, , - x_,we have

C =C,.C _,+CC ,+0 +C ,C, +C .C,

n-1
= Z CCoia
k=0

The initial conditions are C,=1and C,= 1.

The sequence {Cn is the sequence of Catalan Numbers. This recurrence relation can be

solved using the methodMf_gmgp;cisaﬁvﬁnmgs;&sgﬁserﬁ@]:in Section 8.4.




Solving Linear Recurrence
Relations
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Linear Homogeneous Recurrence Relations

Definition: A linear homogeneous recurrence relation of degree k
with constant coefficients is a recurrence relation of the form

a =ca_,+ca_,+...+ca_, ,wherec,c,....c, arereal
numbers, and ¢, #0.

e itis linear because the right-hand side is a sum of the previous terms of
the sequence each multiplied by a function of n.

* itis homogeneous because no terms occur that are not multiples of the
a;s. Each coefficient is a constant.

the degree is k because ¢ is expressed in terms of the previous k terms
of the sequence.

By strong induction, a sequence satisfying such a recurrence relation is
uniquely determined by the recurrence relation and the k initial conditions
a,=C,a,=C,...,a,,=C_,.
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Examples of Linear Homogeneous
Recurrence Relations

p — (1 11)p linear homogeneous recurrence relation of
' 1
" " degree one.
f.=f _,+f_, linear homogeneous recurrence relation

of degree two.

2 .
— not linear.
an an—l + a n—2

Hn — 2Hn_1 +1 not homogeneous.

B = an . coefficients are not constants.
n J—
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Solving Linear Homogeneous Recurrence
Relations

The basic approach is to look for solutions of the form

a =r",where ris a constant.

Note that g =r"is a solution to the recurrence relation
B ; . .

a =ca _ +ca _,+0 +ca _, ifandonlyif

r'=cr" "+ o, r"?+0 +cr, .

Algebraic manipulation yields the characteristic equation:
r‘—cr—cr'?-0l —¢c,_,r—c =0

The sequence {a,} with a = r" is a solution if and only if r is
solution to the characteristic equation.

The solutions to the characteristic equation are called the
characteristic roots of the recurrence relation. The roots are used
to give an explicit formula for all the solutions of the recurrence

relation.
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Solving Linear Homogeneous Recurrence
Relations of Degree Two

Theorem 1: Let ¢, and c, be real numbers.

Suppose that r* - ¢,r — ¢, =0 has two distinct roots

r, and r,. Then the sequence {a, } is a solution to
the recurrence relationg =c.a ., + c,a_,

if and only if
. n n
a =or +ao.f,

forn=0,1,2,..., where a, and a, are constants.
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Using Theorem 1

Example: What is the solution to the recurrence relation
a =a _,+2a _,with g, =2anda, =77
Solution: The characteristic equation is r* —r —2 = 0.

Its roots are r = 2 and r = —1. Therefore, {a, } is a solution to
the recurrence relation if and

onlyifa =+@" 2(—1)”, for some constants a, and a,.
To find the constants a, and a,, note that

a,e2=+09q aland ,=7= | 2(— )

Solving these equations, we find that a, =3 and o, = — 1.

Hence, the solution is the sequence {a, } with g =3.2" —(-1)".
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An Explicit Formula for the Fibonacci
Numbers.

We can use Theorem 1 to find an explicit formula for
the Fibonacci numbers. The sequence of Fibonacci
numbers satisfies the recurrence relation f = f _ +
with the initial conditions: f,=0and f, = 1.

n—2

Solution: The roots of the characteristic equation

r’—r—1=0are
1445
2
1-+5

2
M.NAGA SRAVANI, ASSIST.PROF

h

5




Fibonacci Numbers.

Therefore by Theorem 1
(1+\/§jn (1—\@}"
fi=04 TQ,

2 2

for some constants a, and a,.

Using the initial conditions f, = 0 and f, = 1, we have

fo=0a,+a,=0

ol

2 2

Solving, we obtain o= e
Js 5
Hence, f_L[1+45 "1 (1445
" s 2 J5 |

2
M.NAGA SRAVANI, ASSIST.PROF



The Solution when there is a Repeated Root

Theorem 2: Let C, and c, be real numbers with

¢, # 0.Suppose that r* - ¢,r — ¢, =0has one
repeated root r,. Then the sequence {a,} is a

solution to the recurrence relationa_ =c,a_, +
c,a, ,if and only if

. n n
a =or, +a,nr,

forn=0,1,2,..., where a,and a, are constants.
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Using Theorem 2

Example: What is the solution to the recurrence relation
a =6a _, —9a ,witha,=1anda, =67
Solution: The characteristic equation is r* —6r+9 = 0.

The only root is r = 3. Therefore, {an} is a solution to the
recurrence relation if and only if

a, =+@n , (3)
where a, and a, are constants.
To find the constants a, and a,, note that

a,al3+o00aBd ,=6= - "
Solving, we find that a,=1and a, = 1.
Hence,
a =3"+n3"
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Solving Linear Homogeneous Recurrence
Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous
recurrence relations with constant coefficients of any degree
when the characteristic equation has distinct roots.

Theorem 3: Let ¢, C,,...,c, be real numbers. Suppose that the
characteristic equation

r‘—cr'-0 —c, =0

has k distinct roots r,,r,, ...,r.. Then a sequence {a, } is a
solution of the recurrence relation

a=c¢a _,+ Ca ,+.... +Ca, _,

if and only if n _ )
a =, +a,r, + +a,r,

forn=0,1, 2, ..., where
m.NACA Skavafn AESRTRYFE:



The General Case with Repeated Roots
Allowed

Theorem 4: Letc,, C,,...,C, be real numbers. Suppose that the
characteristic equation
k k-1 .
rr—cr -0 —c =0
has t distinct roots r,1,, ..., I, with multiplicities m;,m,, ...,m,,
respectively sothat m >1fori=0,1,2,..,tand m+m,+..+m,
=k.Thenasequence  {g | is a solution of the recurrence relation
a =ca _,+cd ,+...+ca

n

if and only if a :(allo +o,n+l +o,m, —ln”"l‘l)r1

m, -1 n
+(a2'0 +o,,n+l +a, ., —1n™ )r

2
\/ \/ m, -1 n
+I +(at’0+at’1n+ +ao, . —1n™ )rt
j<

= ~are constants for 1<j<tand 0=
forn=0,1,2, ..., Where Qs RAVAN| ASSISTPROF



Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.

Definition: A linear nonhomogeneous recurrence
relation with constant coefficients is a recurrence
relation of the form:

a,=C0,,+60a, ,+...+ca,, +F(n),

where c , c,,....,c, are real numbers, and F(n) is a
function not identically zero depending only on n.

The recurrence relation
Cln = clan_l + CZ(J'n_2 2 e + ckan k

is called the associated homogeneous recurrence

relation. M.NAGA SRAVANI, ASSIST.PROF



Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.

The following are linear nonhomogeneous recurrence relations
with constant coefficients:

a =a _,+2",

a =a,_,+a _,+n" +n+1,
a =3a _,+n3",

a =a ,+a ,+a ,+n!

where the following are the associated linear homogeneous
recurrence relations, respectively:
an — an—l'

an — an—l + an—2 ’
a =3a, .,

=a_,+a_,+
9 =917 %2 T Y- nAGA SRAVANI, ASSIST.PROF



Solving Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.

Theorem 5: If {an(”)} Is a particular solution of
the nonhomogeneous linear recurrence relation
with constant coefficients

an=ca _,+ca _,+0 +ca _, + F(n),

then every solution is of the form {an(p) +an(h)},
where {an(”)} is a solution of the associated
homogeneous recurrence relation

an=ca, ,+ca _,+{ +ca
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Solving Linear Nonhomogeneous Recurrence
Relations with Constant Coefficients.

Example: Find all solutions of the recurrence relation a =3a_+2n.
What is the solution with 5 =37
1 .
Solution: The associated linear homogeneous equationis g =3q ,
n n-1°
Its solutions are j (h) _ a3" Where ais a constant.
n ]

Because F(n)= 2n is a polynomial in n of degree one, to find a particular solution we

might try a linear function in n, say p=cntd where ¢ and d are constants. Suppose
n )

that p = cn+dis such a solution.

Then g =3q  +2nbecomes cntg=3(c(n-1)+d)+2n

Simplifying yields (2+2c)n +(2d—3c): 0.1t follows that cn + d is a solution if and

only if
2+2c=0and 2d — 3c=0. Therefore, cn + d is a solution ifandonlyifc=—1and d =

-3/2.
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Consequently, an(p) - _3/2 is a particular solution.

i h
!3y Theorem 5, all solutions are of the form , _ (P)Mﬂﬁ( ) _ _n-3/2+ where a
is a constant. oo

To find the solution with
0 =3 let n =1 in the above formula for the general solution.
1 ]

Then3=-1 —3/2 +30,anda-= 11/6. Hence, the solution is an =_n_3/2 + (11/6)3n.
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Divide-and-Conquer Algorithms
and Recurrence Relations
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Divide-and-Conquer Algorithmic Paradigm

Definition: A divide-and-conquer algorithm works by first
dividing a problem into one or more instances of the same
problem of smaller size and then conquering the problem
using the solutions of the smaller problems to find a solution
of the original problem.

Examples:

* Binary search, covered in Chapters 3 and 5: It works by comparing
the element to be located to the middle element. The original list is
then split into two lists and the search continues recursively in the
appropriate sublist.

* Merge sort, covered in Chapter 5: A list is split into two
approximately equal sized sublists, each recursively sorted by merge
sort. Sorting is done by successively merging pairs of lists.
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Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem
of size n into a subproblems.

Assume each subproblem is of size n/b.

Suppose g(n) extra operations are needed in the
conquer step.

Then f(n) represents the number of operations to
solve a problem of size n satisfies the following
recurrence relation:

f(n)=af(n/b)+g(n)

af (n
This is called a d/wde and-con%uer recurrence relation.
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Example: Binary Search

Binary search reduces the search for an element in a
sequence of size n to the search in a sequence of size
n/2. Two comparisons are needed to implement this

reduction;

* one to decide whether to search the upper or lower half of
the sequence and

* the other to determine if the sequence has elements.

Hence, if f(n) is the number of comparisons required to
search for an element in a sequence of size n, then

f(n)=f(n/2)+2

whenniseven. 1 NAGA SRAVANI, ASSIST.PROF



Example: Merge Sort

The merge sort algorithm splits a list of n
(assuming n is even) items to be sorted into two
lists with n/2 items. It uses fewer than n
comparisons to merge the two sorted lists.

Hence, the number of comparisons required to

sort a sequence of size n, is no more than M(n)
where

M(n)=2M(n/2)+n.
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Example: Fast Multiplication of Integers

An algorithm for the fast multiplication of two 2n-bit integers (assuming n is even)
first splits each of the 2n-bit integers into two blocks, each of n bits.

Suppose that a and b are integers with binary expansions of length 2n. Let

a= (GZn 102n 2"'0100)2 and b (bZn 1b2n 2' b bO)z'
Let g = 2" A1 + Ao,b - an1 + BOIWhere
Al = (GZn 1 an+1an )2' AO = (an—l“'alao )2’

B, =(by, 1b,.b,),, By = (b, by

n+1~n

The algorithm is based on the fact that ab can be rewritten as:
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ab=(2"+2")AB, +2"(A,~A,)(B,~B, )+ (2" +1)AB,.

This identity shows that the multiplication of two 2n-bit integers can be carried out using
three multiplications of n-bit integers, together with additions, subtractions, and shifts.

Hence, if f(n) is the total number of operations needed to multiply two n-bit integers, then

f(2n)=3f(n)+Cn
where Cn represents the total number of bit operations; the additions, subtractions and
shifts that are a constant multiple of n-bit operations.
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Estimating the Size of Divide-and-Conquer
Functions.

Theorem 1: Let f be an increasing function that satisfies
the recurrence relation

f(n)=af(n/b)+cn’
whenever n is divisible by b, where a2 1, b is an integer
greater than 1, and c is a positive real number. Then

o(n*®°) if a>1
\O(|an) if a=1.
Furthermore, when n=p"and a =1, where kis a
positive integer,  f(n)=C,n"**" +,

where C, = f(1)+ c¢/(a—1) andC, =—c/(a—1).
M.NAGA SRAVANI, ASSlSJf.PROF
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Complexity of Binary Search

Binary Search Example: Give a big-O estimate for
the number of comparisons used by a binary
search.

Solution: Since the number of comparisons used
by binary search is f(n) = f(n/2) + 2where n is
even, by Theorem 1, it follows that f(n) is O(log n).
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Estimating the Size of Divide-and-Conquer
Functions.

Theorem 2. Master Theorem: Let f be an increasing
function that satisfies the recurrence relation
f(n)=af(n/b)+cn’

whenever n = b, where k is a positive integer

greater than 1, and c and d are real numbers with ¢
positive and d nonnegative. Then

0(n") ifa<b’,
f(n)is- O(nd Iogn) if a=5b",
O(nlogba) ifa>bd.
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Complexity of Merge Sort

Merge Sort Example: Give a big-O estimate for
the number of comparisons used by merge sort.

Solution: Since the number of comparisons
used by merge sort to sort a list of n elements is
less than M(n) where M(n)=2M(n/2) + n, by
the master theorem M(n) is O(n log n).
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Complexity of Fast Integer Multiplication
Algorithm

Integer Multiplication Example: Give a big-O estimate for
the number of bit operations used needed to multiply two
n-bit integers using the fast multiplication algorithm.

Solution: We have shown that f(n)=3f(n/2)+Cn, when n
is even, where f(n) is the number of bit operations needed
to multiply two n-bit integers. Hence by the master
theoremwitha=3,b=2,c=C, and d =0 (so that we have

the case where g pit follows that f(n) is O(n*).

Note that log 3~ 1.6. Therefore the fast multiplication
algorithm is a substantial improvement over the

conventional al%vclarithm that uses o;()n2 bit operations.
'NAGA SRAVANI, ASSIST.PROF



Generating Functions
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Generating Functions

Definition: The generating function for the sequence
a,,a,,...,a,, ... of real numbers is the infinite series

G(x)=a, +a,x+0 ax"“+0 =iakxk

k=0

Examples:

* The sequence {q, } with g, = 3 has the generating function Z3xk.

k=0
* The sequence { }with a, = k+1 has the generating function
has the generating functlon i(k N 1

k=0

. Thesequence{ }W|th .= 2" has the generating 22

function has the generating Nit'R9s1sT.PROF k=0



Generating Functions for Finite Sequences.

Generating functions for finite sequences of real
numbers can be defined by extending a finite
sequence a,,d,, ... ,a_into an infinite sequence by
settinga_ ., =0,a_ ., =0,and so on.

The generating function G(x) of this infinite sequence
{a,}is a polynomial of degree n because no terms of
the form a x’ with j > n occur, that is,

G(x)=a,+ax+l +ax".
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Generating Functions for Finite Sequences.

Example: What is the generating function for the
sequence 1,1,1,1,1,1°

Solution: The generating function of 1,1,1,1,1,1 is
1+x+ x>+ +x* +x°.

By Theorem 1 of Section 2.4, we have

(X6 — 1)/(x—1 )=1 +x+x"+x"+x" +x°

when x # 1.

Consequently G(x)= (x6 = 1)/(x—1) is the generating

function of the sequence.
M.NAGA SRAVANI, ASSIST.PROF



Useful Generating Functions

No.

G(x)

a,
1 = 3 -
(1+x)" =D C(n,k)x* e
Al
=14+ C(n,Dx+C(n,2)x" + ...+ x"
2 - A
(l+ax)-=ZC(”‘k)an0 C(n,k)a
-0
=1+C(n.Nax+C(n.2)a’x* +...+a"x"
3 = k/ryif 4 ) 1
(I+X')"=Z(‘(n.k)x" C(n,k/ryifrlk; O otherwise
A=
=14+C(nx" +C(n,2)x*" 4. . +x"
4 = a0} " l'fks ;0 u‘e,“
!lx -Zx‘=l+x+x’+...+x“ : i i
5 - 1
‘L me =l+x+x +..
6 . N
_l_larnhz.a'x‘=l+mr+a’r+... «
7 1 : =2x" ity 1 ifr| k. O otherwise
1-x =
8 k+1
' -Z(k+l)r-|+2x+3x’+... N
(- x)
-Lk)=C k=Ln-1
9 -ZC(n+k—lk)x‘ Cn+k=Lk)=C(n+ Ln-=1)
(1= -\') 10
=1+C(nDx+C(n+1,2)x" + ...
10 -1 - = (=) =¥ s
—ZC(n+k LEX-1)* x* (-1)'Cln+k-1Lk)y=(-1)'C(n+k-1,n-1)
(l+x)
=1-C(nDx+C(n+1,2)x" ...
1 - = T i T
1 1 .=Z(‘(n+k-l.k)a‘x‘ Cnvk-Lk)a" =C(n+k~-Ln-1a
(I—ax) kw0
=1+C(nDax+C(n+1,2)a’x" +
12 _ - -1 _"2 \'} L
€ —‘-oﬂ— +x+§+§ &
13 = (-=1)** o P (-D*
ln(l+x)=§—x‘-x— _"+§—-4—' ——k—-——
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Counting Problems and Generating
Functions.

Example: Find the number of solutions of

e, +e,+e, =17,

where e ,e,, and e, are nonnegative integers with 2<e < 5, 3<
e,< 6,and 4<e, < 7.

Solution: The number of solutions is the coefficient of x*” in the
expansion of

(x2 +x° +x* +x5)(x3 +x* 4+ x° +x6)(x4 +x° +x° +x7).

This follows because a term equal to is obtained in the product by
picking a term in the first sum X61’ a term in the second sum

e

x°*, and a term in the third sum x**,where e, +e, +e, =17.
There are three solutions since the coefficient of x""in the

product is 3.
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Counting Problems and Generating
Functions.

Example: Use generating functions to find the number of
k-combinations of a set with n elements, i.e., C(n,k).

Solution: Each of the n elements in the set contributes the term
(1 + x) to the generating function

f(x)= 2,0 %"
Hence f(x)=(1+x)" where f(x) is the generating function for {ak},
where g“ represents the number of k-combinations of a set
with n elements.
By the binomial theorem, we have f(x):zn:(’k’)xk

nl k=0

):k!(n—k)! Hence,

n

where (k

Clmk)= k!(nnik)!
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Inclusion-Exclusion
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Principle of Inclusion-Exclusion

In Section 2.2, we developed the following formula
for the number of elements in the union of two
finite sets:

AUB|=|A|+|B|-|ANB,

We will generalize this formula to finite sets of
any size.
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Two Finite Sets

Example: In a discrete mathematics class every student is a
major in computer science or mathematics or both. The
number of students having computer science as a major
(possibly along with mathematics) is 25; the number of
students having mathematics as a major (possibly along
with computer science) is 13; and the number of students
majoring in both computer science and mathematics is 8.
How many students are in the class?

|A U B|=|A|+|B|-|A N B|=25+13-8=30

Solution: |AUB|=|A|+|B|-|ANB|
=25+13-8=30

7 I
Al=25 IA N B|=8 B|=13
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Three Finite Sets.

AUBUC|=

Al+|Bl+|C|-|AnB|-|AnC|-|BNC|+|ANBNC

(a) Count of elements by (b) Count of elements by (c) Count of elements by
|Al+|8]+|c] |Al+(8]+|cl-|an B|- |A|+|8|+|cl-|an B|-
[anc|-|BNc| |Anc|-|BNncl+|AnBNC]
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Three Finite Sets.

Example: A total of 1232 students have taken a course in Spanish, 879 have taken
a course in French, and 114 have taken a course in Russian. Further, 103 have
taken courses in both Spanish and French, 23 have taken courses in both Spanish
and Russian, and 14 have taken courses in both French and Russian. If 2092
students have taken a course in at least one of Spanish French and Russian, how
many students have taken a course in all 3 languages.

Solution: Let S be the set of students who have taken a course in Spanish, F the
set of students who have taken a course in French, and R the set of students who
have taken a course in Russian. Then, we have

S|=1232,|F|=879,|R|=114,|SNF| =103,
SUFUR|=23.

Using the equation
SUFUR|=|S|+|F|+|R|-|SNF|-|SAR|=|F "R|+|SNFNR
we obtain 2092 = 1232 + 879 + 114 103 =23 -14 +|SNF NR)|.

Solving for ‘5 M F mR‘ yields 7.
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FNR|=14, and

SMR|=23,

’




lllustration of Three Finite Set Example

ISNFNR|=2 IsnF|=103

|s|=1232 |F|=879
N |
— \ 4 =
IsnR|=23 \7/ | IFNR|=14
|R|=114

|SUFUR|=2092
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The Principle of Inclusion-Exclusion.

Theorem 1. The Principle of Inclusion-Exclusion:
Let A LA, ..., A be finite sets. Then:

AUAUE VA= D A=Y |ANAl+

1<i<j<k<n 1<i<j<n

Y |JANANA|-. +(-1)"

1<i<j<k<n

A NA N MmA

M.NAGA SRAVANI, ASSIST.PROF



The Principle of Inclusion-Exclusion.

Proof: An element in the union is counted exactly
once in the right-hand side of the equation.
Consider an element a that is a member of r of

thesets 4 ..., A where 1<r <n.

Al

* |t is counted C(r,1) times by Z

A NA,

* It is counted C(r,2) times by Z

* |In general, it is counted C(r,m) times by the
summation of m of the sets A .
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The Principle of Inclusion-Exclusion.

Thus the element is counted exactly
c(r,1)-c(r,2)+C(r,3)-0 +(-1)" ¢(r,r)=0.
times by the right hand side of the equation.

By Corollary 2 of Section 6.4, we have
c(r,0)-C(r,1)+C(r,2)-8 +(-1) C(r,r)=0.
Hence,

1=C(r,0)=C(r,1)=C(r,2)+0 +(=1)" c(r,r).
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Applications of
Inclusion-Exclusion
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The Number of Onto Functions.

Example: How many onto functions are there from a set with six elements to a
set with three elements?
Solution: Suppose that the elements in the codomain are b , b,, and b;. Let P,
P,, and P, be the properties that b,, b,, and b, are not in the range of the
function, respectively. The function is onto if none of the properties P, P,, and
P, hold.
By the inclusion-exclusion principle the number of onto functions from a set with
six elements to a set with three elements is
N-— [N )+N(R,)+N(P,) | +[N(RP,)+N(PP,) +N(PP,) | -N(RPP,)
Here the total number of functlons from a set with six elements to one with three
elements is N=3°
* The number of functions that do not have in the range is N(P,)=2°. Similarly, N(P,) =
N(3,)=2"
* Note that N(RP,)=N(PP,)=N(P,P,)=1and N(RAPR,)=0.
Hence, the number of onto functions from a set with six elements to a set with
three elements is:

3° -3.2°+3=729-192+3=540
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The Number of Onto Functions.

Theorem 1: Let m and n be positive integers
with m 2 n. Then there are

n-1

n" —C(n,l)(n—l)m +C(n,2)(n—2)m -0 +(-1) "¢(n,n-1)-1"

onto functions from a set with m elements to a
set with n elements.

Proof follows from the principle of
inclusion-exclusion (see Exercise 27).
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Derangements.

Definition: A derangement is a permutation of
objects that leaves no object in the original
position.

Example: The permutation of 21453 is a
derangement of 12345 because no number is
left in its original position. But 21543 is not a
derangement of 12345, because 4 is in its
original position.
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Derangements.

Theorem 2: The number of derangements of a
set with n elements is

Proof follows from the principle of inclusion-exclusion (see text).

M.NAGA SRAVANI, ASSIST.PROF



Derangements:

The Hatcheck Problem: A new employee checks the hats of n
people at restaurant, forgetting to put claim check numbers on
the hats. When customers return for their hats, the checker gives
them back hats chosen at random from the remaining hats.
What is the probability that no one receives the correct hat.

Solution: The answer is the number of ways the hats can be

arranged so that there is no hat in its original position divided by
n!, the number of permutations of n hats.

Remark: It can be shown D 1 1 1 1

that the probability of a b=l l-S o=l (1) =
n! 11 21 3l n!

derangement approaches

1/e aS N grows TABLE 1 The Probability of a Derangement.

without bound. n 2 3 4 5 6 7

M.N| D, /n! 0.50000 0.33333 0.37500 0.36667 0.36806 0.36786




Accessibility Content:
Text Alternatives for Images
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Rabbits and the Fibonacci Numbers . — Text
Alternative

There is O reproducing pair and 1 young pair in the first month,
the number of total pairs is 1. There is O reproducing pair and 1
young pair in the second month, the number of total pairs is 1.
There is 1 reproducing pair and 1 young pair in the third month,
the number of total pairs is 2. There is 1 reproducing pair and 2
young pairs in the fourth month, the number of total pairs is 3.
There are 2 reproducing pairs and 3 young pairs in the fifth
month, the number of total pairs is 5. There are 3 reproducing

pairs and 5 young pairs in the sixth month, the number of total
pairs is 8.
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Counting Bit Strings . — Text Alternative

The first bit string starts with any bit string of length N minus 1
with no two consecutive zeros and ends with a 1. The number of
strings of this type is A sub, N minus 1. The second bit strings
starts with any bit string of length N minus 2 with no two
consecutive zeros and ends with 1 0. The number of strings of
this type is A sub, N minus 2. The total number of bit strings of

length N with no two consecutive zeros is A sub, N minus 1, plus
A sub, N minus 2.
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Useful Generating Functions — Text Alternative

The column headers are marked as: G(x) and ak.

The data is as follows:

Row 1: (1 plus x) to the power n equals summation from k equals 0 through n C (n, k) times x to the
power k equals 1 plus c (n, 1)x plus C (n, 2) x squared plus .. plus x to the power n and C (n, k).

Row 2: (1 plus a times x) to the power n equals summation from k equals 0 through n C (n, k) a to the
power k x to the power k equals 1 plus C (n, 1) a times x plus C (n, 2) a squared times x squared plus
.. plus a to the power n times x to the power n and C (n, k) times a to the power k.

Row 3: (1 plus x to the power r) to the power n equals summation from k equals 0 through n C (n, k)
times x to the power r times k equals 1 plus C (n, 1) x to the power r plus C (n, 2) times x to the
power 2 times r plus .. plus x to the power r times n and C (n, k over r) if r|k; 0 otherwise.

Row 4: Fraction 1 minus x to the power n plus 1 over 1 minus x equals summation from k equals 0
through infinity x to the power k equals 1 plus x plus x squared plus... x to the power nand 1 if k
lesser than or equal to n; 0 otherwise.

Row 5: Fraction 1 over 1 minus x equals summation from k equals 0 through infinity x to the power k
equals 1 plus x plus x squared plus ... and 1.

Row 6: Fraction 1 over 1 minus a times x equals summation from k equals 0 through infinity a to the
power k times x to the power k equals 1 plus a times x plus a squared times x squared plus .. and a to
the power k.

Row 7: 1 over 1 minus x to the power r equals summation from k equals 0 through infinity equals 1
plus x to the power r plus x to the power 2 times r and 1 if r| k; otherwise.

Row 8: Fraction 1 over (1 minus x) squared equals summation 0 through infinity (k plus 1) x to the
power k equals 1 plus 2 times x plus 3 times x squared, and k plus 1.
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Row 9: Fraction 1 over (1 minus x) to the power n equals summation from k
equals 0 through infinity C (n plus k minus 1, k) times x to the power k equals 1
plus C (n, 1) times x plus ¢ (n plus 1, 2) times x squared plus .. and C (n plus k
minus 1, k) equals C (n plus k minus 1, n minus 1).

Row 10: Fraction 1 over (1 plus x) to the power n equals summation k equals O
through infinity C (n plus k minus 1, k) times (negative 1) to the power k times x to
the power k equals 1 minus C (n, 1) times x plus C (n plus 1, 2) x squared.. and
(negative 1) to the power k times C (n plus k minus 1, k) equals (negative 1) to the
power k times C (n plus k minus 1, n minus 1).

Row 11: Fraction 1 over (1 minus a times x) to the power n equals summation k
equals 0 through infinity C (n plus k minus 1, k) times a to the power k times x to
the power k equals 1 plus C (n, 1) times a times x plus C (n plus 1, 2) times a
squared times x squared plus .. and C (n plus k minus 1, k) times a to the power k)
equals C (n plus k minus 1, n minus 1) times a to the power k.

Row 12: e to the power x equals summation k equals 0 through infinity fraction x
to the power k over k factorial equals 1 plus x plus fraction x squared over 2
factorial plus fraction x cubed over 3 factorial plus .. and 1 over k factorial.

Row 13: In (1 plus x) equals summation k equals 1 through infinity fraction
(negative 1) to the power k plus 1 over k times x to the power k equals x minus
fraction x squared over 2 plus fraction x cubed over 3 minus x to the power 4 over
4 plus .. and (negative 1) to the power k plus 1 over k.
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Two Finite Sets — Text Alternative

The number of elements in A is 25, the number of elements in B
is 13. The number of elements in the intersection of A and B is 8.
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Three Finite Sets 1 — Text Alternative

The first diagram shows count of elements by the formula number of elements
in A plus the number of elements in B plus the number of elements in C. There
is number 1 in exactly one of the three sets, number 2 in the intersection of any
two of the sets, and number 3 in the intersection of all three sets. The second
diagram shows count of elements by the formula number of elements in A plus
the number of elements in B plus the number of elements in C minus the
number of elements in intersection of A and B minus the number of elements in
intersection of A and C minus the number of elements in intersection of B and
C. There is number 1 in exactly one of the three sets and in the intersection of
any two of the sets, and number 0 in the intersection of all three sets. The third
diagram shows count of elements by the formula number of elements in A plus
the number of elements in B plus the number of elements in C minus the
number of elements in intersection of A and B minus the number of elements in
intersection of A and C minus the number of elements in intersection of B and C
plus the number of elements in intersection of A, B, and C. There is number 1 in
exactly one of the three sets and in all intersections.
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lllustration of Three Finite Set Example — Text
Alternative

The number of elements for the sets are given below:
SetS$=1232

Set F =879

SetR=114

Intersection of sets Sand R =23

Intersection of sets Fand R=14

Intersection of sets S and F =103

Union of sets S, F, and R = 2092

M.NAGA SRAVANI, ASSIST.PROF



