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Chapter Summary

Applications of Recurrence Relations.

Solving Linear Recurrence Relations.

• Homogeneous Recurrence Relations.

• Nonhomogeneous Recurrence Relations.

Divide-and-Conquer Algorithms and Recurrence 
Relations.

Generating Functions.

Inclusion-Exclusion.

Applications of Inclusion-Exclusion.
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Applications of Recurrence 
Relations
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Recurrence Relations (recalling 
definitions )

Definition: A recurrence relation for the sequence is
an equation that expresses in terms of one or more
of the previous terms of the sequence, namely,

for all integers n with where is a
nonnegative integer. 

• A sequence is called a solution of a recurrence relation if its 
terms satisfy the recurrence relation.

• The initial conditions for a sequence specify the terms that 
precede the first term where the recurrence relation takes 
effect.
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Rabbits and the Fibonacci Numbers 1

Example: A young pair of rabbits (one of each gender) is 

placed on an island. A pair of rabbits does not breed 

until they are 2 months old. After they are 2 months old, 

each pair of rabbits produces another pair each month. 

Find a recurrence relation for the number of pairs of 

rabbits on the island after n months, assuming that 

rabbits never die.

This is the original problem considered by Leonardo 

Pisano (Fibonacci) in the thirteenth century.
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Rabbits and the Fibonacci Numbers 2

Modeling the Population Growth of Rabbits on 

an Island
6
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Rabbits and the Fibonacci Numbers 3

Solution: Let be the number of pairs of rabbits after n months.

• There are is pairs of rabbits on the island at the end of the first month.

• We also have because the pair does not breed during the first month.

• To find the number of pairs on the island after n months, add the number on 
the island after the previous month, and the number of newborn pairs,
which equals because each newborn pair comes from a pair at least two
months old.

Consequently the sequence satisfies the recurrence relation

for n ≥ 3 with the initial conditions

The number of pairs of rabbits on the island after n months is given 
by the nth Fibonacci number.
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The Tower of Hanoi 1

In the late nineteenth century, the French mathematician 
Édouard Lucas invented a puzzle consisting of three pegs 
on a board with disks of different sizes. Initially all of the 
disks are on the first peg in order of size, with the largest 
on the bottom.

Rules: You are allowed to move the disks one at a time 
from one peg to another as long as a larger disk is never 
placed on a smaller.

Goal: Using allowable moves, end up with all the disks 
on the second peg in order of size with largest on the 
bottom.
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The Tower of Hanoi 2

The Initial Position in the Tower of Hanoi Puzzle
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The Tower of Hanoi 3

 Solution: Let denote the number of moves needed to solve the
Tower of Hanoi Puzzle with n disks. Set up a recurrence relation for   
the sequence Begin with n disks on peg 1. We can transfer the top
n −1 disks, following the rules of the puzzle, to peg 3 using moves.

First, we use 1 move to transfer the largest disk to the second peg. 

Then we transfer the n −1 disks from peg 3 to peg 2 using
additional moves. This can not be done in fewer steps. Hence,

The initial condition is since a single disk can be 
transferred from peg 1 to peg 2 in one move.
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The Tower of Hanoi 4

We can use an iterative approach to solve this recurrence relation by 
repeatedly expressing in terms of the previous terms of the sequence.

• There was a myth created with the puzzle. Monks in a tower in Hanoi are 
transferring 64 gold disks from one peg to another following the rules of the puzzle.  
They move one disk each day. When the puzzle is finished, the world will end. 

• Using this formula for the 64 gold disks of the myth,
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days are needed to solve the puzzle, which is more than 
500 billion years.

• Reve’s puzzle (proposed in 1907 by Henry Dudeney) is 
similar but has 4 pegs. There is a well-known unsettled 
conjecture for the minimum number of moves needed 
to solve this puzzle. (see Exercises 38-45)
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Counting Bit Strings 1

Example 3: Find a recurrence relation and give initial conditions for the number 
of bit strings of length n without two consecutive 0s. How many such bit strings 
are there of length five?

Solution: Let denote the number of bit strings of length n without two
consecutive 0s. To obtain a recurrence relation for note that the number of
bit strings of length n that do not have two consecutive 0s is the number of bit 
strings ending with a 0 plus the number of such bit strings ending with a 1. 

Now assume that n ≥ 3. 

• The bit strings of length n ending with 1 without two consecutive 0s are the bit 
strings of length n −1 with no two consecutive 0s with a 1 at the end. Hence, there 
are such bit strings.

• The bit strings of length n ending with 0 
without two consecutive 0s are the bit 
strings of length n −2 with no two 
consecutive 0s with 10 at the end. Hence, 
there are such bit strings.

We conclude that for n ≥ 3.

13



M.NAGA SRAVANI, ASSIST.PROF

Bit Strings 2

The initial conditions are: 
•   since both the bit strings 0 and 1 do not have consecutive 0s. 
•  since the bit strings 01, 10, and 11 do not have consecutive

0s, while 00 does.

To obtain we use the recurrence relation three times to 
find that:
•   

•    

•  

Note that satisfies the same recurrence relation as the Fibonacci 
sequence. Since we conclude that
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Counting the Ways to Parenthesize a 
Product

Example: Find a recurrence relation for the number of ways to parenthesize
the product of n + 1 numbers, to specify the order of
multiplication. For example, since all the possible ways to parenthesize 4
numbers are

Solution: Note that however parentheses are inserted in one
“·” operator remains outside all parentheses. This final operator appears 
between two of the n + 1 numbers, say Since there are ways to
insert parentheses in the product and ways to insert
parentheses in the product we have

The initial conditions are

The sequence is the sequence of Catalan Numbers. This recurrence relation can be 
solved using the method of generating functions; see Exercise 41 in Section 8.4.
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Solving Linear Recurrence 
Relations

16
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Linear Homogeneous Recurrence Relations

Definition: A linear homogeneous recurrence relation of degree k 
with constant coefficients is a recurrence relation of the form

where are real

numbers, and

• it is linear because the right-hand side is a sum of the previous terms of 
the sequence each multiplied by a function of n.

• it is homogeneous because no terms occur that are not multiples of the
Each coefficient is a constant.

• the degree is k because is expressed in terms of the previous k terms
of the sequence.

By strong induction, a sequence satisfying such a recurrence relation is 
uniquely determined by the recurrence relation and the k initial conditions
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Examples of Linear Homogeneous 
Recurrence Relations 

linear homogeneous recurrence relation of 
degree one.

linear homogeneous recurrence relation 
of degree two.

not linear.

not homogeneous.

coefficients are not constants.
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Solving Linear Homogeneous Recurrence 
Relations

The basic approach is to look for solutions of the form
where r is a constant.

Note that is a solution to the recurrence relation
if and only if

Algebraic manipulation yields the characteristic equation:

The sequence with is a solution if and only if r is a
solution to the characteristic equation. 

The solutions to the characteristic equation are called the 
characteristic roots of the recurrence relation. The roots are used 
to give an explicit formula for all the solutions of the recurrence 
relation.
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Solving Linear Homogeneous Recurrence 
Relations of Degree Two

Theorem 1: Let be real numbers.
Suppose that has two distinct roots

Then the sequence is a solution to
the recurrence relation

if and only if

for n = 0,1,2, . . . , where are constants.
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Using Theorem 1
Example: What is the solution to the recurrence relation

with

Solution: The characteristic equation is

Its roots are r = 2 and r = −1. Therefore, is a solution to
the recurrence relation if and

only if for some constants

To find the constants note that

Solving these equations, we find that

Hence, the solution is the sequence with
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An Explicit Formula for the Fibonacci 
Numbers 1

We can use Theorem 1 to find an explicit formula for 
the Fibonacci numbers. The sequence of Fibonacci 
numbers satisfies the recurrence relation
with the initial conditions:

Solution: The roots of the characteristic equation

are
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Fibonacci Numbers 2

Therefore by Theorem 1

for some constants

Using the initial conditions we have

Solving, we obtain

Hence,
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The Solution when there is a Repeated Root

Theorem 2: Let be real numbers with

Suppose that has one
repeated root Then the sequence is a
solution to the recurrence relation 

if and only if

for n = 0,1,2, . . . , where are constants.
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Using Theorem 2

Example: What is the solution to the recurrence relation
with

Solution: The characteristic equation is

The only root is r = 3. Therefore, is a solution to the
recurrence relation if and only if 

where are constants.

To find the constants note that

Solving, we find that

Hence,
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Solving Linear Homogeneous Recurrence 
Relations of Arbitrary Degree

This theorem can be used to solve linear homogeneous 
recurrence relations with constant coefficients of any degree 
when the characteristic equation has distinct roots.

Theorem 3: Let be real numbers. Suppose that the
characteristic equation

has k distinct roots Then a sequence is a
solution of the recurrence relation

if and only if

for n = 0, 1, 2, .  . . , where are constants.
26
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The General Case with Repeated Roots 
Allowed

Theorem 4: Let be real numbers. Suppose that the

characteristic equation

has t distinct roots with multiplicities
respectively so that for i = 0, 1, 2, .  . . ,t and
= k. Then a sequence is a solution of the recurrence relation

 
if and only if

 for n = 0, 1, 2, .  . . , where are constants for 1≤ i ≤ t and 0≤ j ≤
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Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients 1

Definition: A linear nonhomogeneous recurrence 
relation with constant coefficients is a recurrence 
relation of the form:

where are real numbers, and F(n) is a
function not identically zero depending only on n.

The recurrence relation

is called the associated homogeneous recurrence 
relation.
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Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients 2

The following are linear nonhomogeneous recurrence relations 
with constant coefficients:

where the following are the associated linear homogeneous 
recurrence relations, respectively:
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Solving Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients 1

Theorem 5: If is a particular solution of
the nonhomogeneous linear recurrence relation 
with constant coefficients

then every solution is of the form
where is a solution of the associated
homogeneous recurrence relation
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Solving Linear Nonhomogeneous Recurrence 
Relations with Constant Coefficients 2

Example: Find all solutions of the recurrence relation

What is the solution with

Solution: The associated linear homogeneous equation is

Its solutions are where α is a constant.

Because F(n)= 2n is a polynomial in n of degree one, to find a particular solution we 

might try a linear function in n, say where c and d are constants. Suppose

that is such a solution.

Then becomes

Simplifying yields It follows that cn + d is a solution if and

only if 

2 + 2c = 0 and 2d − 3c = 0. Therefore, cn + d is a solution if and only if c = − 1 and d =
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Consequently, is a particular solution.

By Theorem 5, all solutions are of the form where α
is a constant.
To find the solution with

let n = 1 in the above formula for the general solution.

Then 3 = −1 − + 3 α, and α = Hence, the solution is
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Divide-and-Conquer Algorithms 
and Recurrence Relations

33
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Divide-and-Conquer Algorithmic Paradigm

Definition: A divide-and-conquer algorithm works by first  
dividing a problem into one or more instances of the same 
problem of smaller size and then conquering the problem 
using the solutions of the smaller problems to find a solution 
of the original problem.

Examples:

• Binary search, covered in Chapters 3 and 5: It works by comparing 
the element to be located to the middle element. The original list is 
then split into two lists and the search continues recursively in the 
appropriate sublist.

• Merge sort, covered in Chapter 5: A list is split into two 
approximately equal sized sublists, each recursively sorted by merge 
sort. Sorting is done by successively merging pairs of lists. 
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Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem 
of size n into a subproblems.

Assume each subproblem is of size n/b.

Suppose g(n) extra operations are needed in the 
conquer step.

Then f(n) represents the number of operations to 
solve a problem of size n satisfies the following 
recurrence relation:

This is called a divide-and-conquer recurrence relation.
35
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Example: Binary Search

Binary search reduces the search for an element in a 
sequence of size n to the search in a sequence of size 
n/2. Two comparisons are needed to implement this 
reduction;

• one to decide whether to search the upper or lower half of 
the sequence and 

• the other to determine if the sequence has elements.

Hence, if f(n) is the number of comparisons required to 
search for an element in a sequence of size n, then

when n is even.
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Example: Merge Sort

The merge sort algorithm splits a list of n 
(assuming n is even) items to be sorted into two 
lists with n/2 items. It uses fewer than n 
comparisons to merge the two sorted lists.

Hence, the number of comparisons required to 
sort a sequence of size n, is no more than M(n) 
where

37



M.NAGA SRAVANI, ASSIST.PROF

Example: Fast Multiplication of Integers

An algorithm for the fast multiplication of two 2n-bit integers (assuming n is even) 
first splits each of the 2n-bit integers into two blocks, each of n bits.

Suppose that a and b are integers with binary expansions of length 2n. Let

Let where

The algorithm is based on the fact that ab can be rewritten as:
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This identity shows that the multiplication of two 2n-bit integers can be carried out using 
three multiplications of n-bit integers, together with additions, subtractions, and shifts. 

Hence, if f(n) is the total number of operations needed to multiply two n-bit integers, then

where Cn represents the total number of bit operations; the additions, subtractions and 
shifts that are a constant multiple of n-bit operations.
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Estimating the Size of Divide-and-Conquer 
Functions 1

Theorem 1: Let f be an increasing function that satisfies 
the recurrence relation

whenever n is divisible by b, where a≥ 1, b is an integer 
greater than 1, and c is a positive real number. Then

Furthermore, when and where k is a

positive integer,
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Complexity of Binary Search

Binary Search Example: Give a big-O estimate for 
the number of comparisons used by a binary 
search.

Solution: Since the number of comparisons used 
by binary search is where n is
even, by Theorem 1, it follows that f(n) is O(log n).
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Estimating the Size of Divide-and-Conquer 
Functions 2

Theorem 2. Master Theorem: Let f be an increasing 
function that satisfies the recurrence relation

whenever where k is a positive integer
greater than 1, and c and d are real numbers with c 
positive and d nonnegative. Then
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Complexity of Merge Sort

Merge Sort Example: Give a big-O estimate for 
the number of comparisons used by merge sort.

Solution: Since the number of comparisons 
used by merge sort to sort a list of n elements is 
less than M(n) where by
the master theorem M(n) is O(n log n).
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Complexity of Fast Integer Multiplication 
Algorithm

Integer Multiplication Example: Give a big-O estimate for 
the number of bit operations used needed to multiply two 
n-bit integers using the fast multiplication algorithm. 

Solution: We have shown that when n
is even, where f(n) is the number of bit operations needed 
to multiply two n-bit integers. Hence by the master 
theorem with a = 3, b = 2, c = C, and d = 0 (so that we have 
the case where it follows that f(n) is

Note that log Therefore the fast multiplication
algorithm is a substantial improvement over the 
conventional algorithm that uses bit operations.
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Generating Functions 

45
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Generating Functions

Definition: The generating function for the sequence
of real numbers is the infinite series

Examples:

• The sequence with has the generating function

• The sequence with has the generating function
has the generating function

• The sequence with has the generating
function has the generating function
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Generating Functions for Finite Sequences 1

Generating functions for finite sequences of real 
numbers can be defined by extending a finite 
sequence into an infinite sequence by
setting and so on.

The generating function G(x) of this infinite sequence
is a polynomial of degree n because no terms of

the form with j > n occur, that is,
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Generating Functions for Finite Sequences 2

Example: What is the generating function for the 
sequence 1,1,1,1,1,1?

Solution: The generating function of 1,1,1,1,1,1 is

By Theorem 1 of Section 2.4, we have

when x ≠ 1.

Consequently is the generating
function of the sequence.
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Useful Generating Functions
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Counting Problems and Generating 
Functions 1

Example: Find the number of solutions of

where and are nonnegative integers with
and

Solution: The number of solutions is the coefficient of in the

expansion of 

This follows because a term equal to is obtained in the product by 
picking a term in the first sum a term in the second sum

and a term in the third sum where

There are three solutions since the coefficient of in the
product is 3.
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Counting Problems and Generating 
Functions 2

Example: Use generating functions to find the number of 
k-combinations of a set with n elements, i.e., C(n,k). 

Solution: Each of the n elements in the set contributes the term 
(1 + x) to the generating function

Hence where f(x) is the generating function for
where represents the number of k-combinations of a set
with n elements. 

By the binomial theorem, we have

where
Hence,
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Inclusion-Exclusion

52
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Principle of Inclusion-Exclusion

In Section 2.2, we developed the following formula 
for the number of elements in the union of two 
finite sets:

We will generalize this formula to finite sets of 
any size.
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Two Finite Sets

Example: In a discrete mathematics class every student is a 
major in computer science or mathematics or both. The 
number of students having computer science as a major 
(possibly along with mathematics) is 25; the number of 
students having mathematics as a major (possibly along 
with computer science) is 13; and the number of students 
majoring in both computer science and mathematics is 8. 
How many students are in the class?

Solution:
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Three Finite Sets 1

55
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Three Finite Sets 2

Example: A total of 1232 students have taken a course in Spanish, 879 have taken 
a course in French, and 114 have taken a course in Russian. Further, 103 have 
taken courses in both Spanish and French, 23 have taken courses in both Spanish 
and Russian, and 14 have taken courses in both French and Russian. If 2092 
students have taken a course in at least one of Spanish French and Russian, how 
many students have taken a course in all 3 languages. 

Solution: Let S be the set of students who have taken a course in Spanish, F the 
set of students who have taken a course in French, and R the set of students who 
have taken a course in Russian. Then, we have

and

Using the equation 

we obtain 2092 = 1232 + 879 + 114 −103 −23 −14 +

Solving for yields 7.
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Illustration of Three Finite Set Example
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The Principle of Inclusion-Exclusion 1

Theorem 1. The Principle of Inclusion-Exclusion: 
Let be finite sets. Then:
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The Principle of Inclusion-Exclusion 2

Proof: An element in the union is counted exactly 
once in the right-hand side of the equation. 
Consider an element a that is a member of r of 
the sets where 1≤ r ≤ n.

• It is counted C(r,1) times by

• It is counted C(r,2) times by

• In general, it is counted C(r,m) times by the 
summation of m of the sets
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The Principle of Inclusion-Exclusion 3

Thus the element is counted exactly

times by the right hand side of the equation.

By Corollary 2 of Section 6.4, we have

Hence,
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Applications of 
Inclusion-Exclusion
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The Number of Onto Functions 1

Example: How many onto functions are there from a set with six elements to a 
set with three elements?
Solution: Suppose that the elements in the codomain are  Let 

be the properties that are not in the range of the
function, respectively. The function is onto if none of the properties

hold.
By the inclusion-exclusion principle the number of onto functions from a set with 
six elements to a set with three elements is

• Here the total number of functions from a set with six elements to one with three 
elements is

• The number of functions that do not have in the range is Similarly,

• Note that
Hence, the number of onto functions from a set with six elements to a set with 
three elements is:
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The Number of Onto Functions 2

Theorem 1: Let m and n be positive integers 
with m ≥ n. Then there are

onto functions from a set with m elements to a 
set with n elements. 

Proof follows from the principle of 
inclusion-exclusion (see Exercise 27).
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Derangements 1

Definition: A derangement is a permutation of 

objects that leaves no object in the original 

position.

Example: The permutation of 21453 is a 

derangement of 12345 because no number is 

left in its original position. But 21543 is not a 

derangement of 12345, because 4 is in its 

original position.

64



M.NAGA SRAVANI, ASSIST.PROF

Derangements 2

Theorem 2: The number of derangements of a 
set with n elements is

Proof follows from the principle of inclusion-exclusion (see text).
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Derangements 3

The Hatcheck Problem: A new employee checks the hats of n 
people at restaurant, forgetting to put claim check numbers on 
the hats. When customers return for their hats, the checker gives 
them back hats chosen at random from the remaining hats. 
What is the probability that no one receives the correct hat.

Solution: The answer is the number of ways the hats can be 
arranged so that there is no hat in its original position divided by

the number of permutations of n hats.

Remark: It can be shown 
that the probability of a 
derangement approaches 
1/e as n grows
without bound. 

TABLE 1 The Probability of a Derangement.
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Accessibility Content: 
Text Alternatives for Images
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Rabbits and the Fibonacci Numbers 2 – Text 
Alternative

There is 0 reproducing pair and 1 young pair in the first month, 

the number of total pairs is 1. There is 0 reproducing pair and 1 

young pair in the second month, the number of total pairs is 1. 

There is 1 reproducing pair and 1 young pair in the third month, 

the number of total pairs is 2. There is 1 reproducing pair and 2 

young pairs in the fourth month, the number of total pairs is 3.  

There are 2 reproducing pairs and 3 young pairs in the fifth 

month, the number of total pairs is 5. There are 3 reproducing 

pairs and 5 young pairs in the sixth month, the number of total 

pairs is 8.
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Counting Bit Strings 1 – Text Alternative

The first bit string starts with any bit string of length N minus 1 

with no two consecutive zeros and ends with a 1. The number of 

strings of this type is A sub, N minus 1. The second bit strings 

starts with any bit string of length N minus 2 with no two 

consecutive zeros and ends with 1 0. The number of strings of 

this type is A sub, N minus 2. The total number of bit strings of 

length N with no two consecutive zeros is A sub, N minus 1, plus 

A sub, N minus 2.
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Useful Generating Functions – Text Alternative

The column headers are marked as: G(x) and ak.
The data is as follows:
Row 1: (1 plus x) to the power n equals summation from k equals 0 through n C (n, k) times x to the 
power k equals 1 plus c (n, 1)x plus C (n, 2) x squared plus .. plus x to the power n and C (n, k).
Row 2: (1 plus a times x) to the power n equals summation from k equals 0 through n C (n, k) a to the 
power k x to the power k equals 1 plus C (n, 1) a times x plus C (n, 2) a squared times x squared plus 
.. plus a to the power n times x to the power n and C (n, k) times a to the power k.
Row 3: (1 plus x to the power r) to the power n equals summation from k equals 0 through n C (n, k) 
times x to the power r times k equals 1 plus C (n, 1) x to the power r plus C (n, 2) times x to the 
power 2 times r plus .. plus x to the power r times n and C (n, k over r) if r|k; 0 otherwise.
Row 4: Fraction 1 minus x to the power n plus 1 over 1 minus x equals summation from k equals 0 
through infinity x to the power k equals 1 plus x plus x squared plus... x to the power n and 1 if k 
lesser than or equal to n; 0 otherwise.
Row 5: Fraction 1 over 1 minus x equals summation from k equals 0 through infinity x to the power k 
equals 1 plus x plus x squared plus ... and 1.
Row 6: Fraction 1 over 1 minus a times x equals summation from k equals 0 through infinity a to the 
power k times x to the power k equals 1 plus a times x plus a squared times x squared plus .. and a to 
the power k.
Row 7: 1 over 1 minus x to the power r equals summation from k equals 0 through infinity equals 1 
plus x to the power r plus x to the power 2 times r and 1 if r|k; otherwise.
Row 8: Fraction 1 over (1 minus x) squared equals summation 0 through infinity (k plus 1) x to the 
power k equals 1 plus 2 times x plus 3 times x squared, and k plus 1. 
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Row 9: Fraction 1 over (1 minus x) to the power n equals summation from k 
equals 0 through infinity C (n plus k minus 1, k) times x to the power k equals 1 
plus C (n, 1) times x plus c (n plus 1, 2) times x squared plus .. and C (n plus k 
minus 1, k) equals C (n plus k minus 1, n minus 1).
Row 10: Fraction 1 over (1 plus x) to the power n equals summation k equals 0 
through infinity C (n plus k minus 1, k) times (negative 1) to the power k times x to 
the power k equals 1 minus C (n, 1) times x plus C (n plus 1, 2) x squared.. and 
(negative 1) to the power k times C (n plus k minus 1, k) equals (negative 1) to the 
power k times C (n plus k minus 1, n minus 1).
Row 11: Fraction 1 over (1 minus a times x) to the power n equals summation k 
equals 0 through infinity C (n plus k minus 1, k) times a to the power k times x to 
the power k equals 1 plus C (n, 1) times a times x plus C (n plus 1, 2) times a 
squared times x squared plus .. and C (n plus k minus 1, k) times a to the power k) 
equals C (n plus k minus 1, n minus 1) times a to the power k.
Row 12: e to the power x equals summation k equals 0 through infinity fraction x 
to the power k over k factorial equals 1 plus x plus fraction x squared over 2 
factorial plus fraction x cubed over 3 factorial plus .. and 1 over k factorial.
Row 13: ln (1 plus x) equals summation k equals 1 through infinity fraction 
(negative 1) to the power k plus 1 over k times x to the power k equals x minus 
fraction x squared over 2 plus fraction x cubed over 3 minus x to the power 4 over 
4 plus .. and (negative 1) to the power k plus 1 over k.
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Two Finite Sets – Text Alternative

The number of elements in A is 25, the number of elements in B 

is 13. The number of elements in the intersection of A and B is 8.
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Three Finite Sets 1 – Text Alternative

The first diagram shows count of elements by the formula number of elements 
in A plus the number of elements in B plus the number of elements in C. There 
is number 1 in exactly one of the three sets, number 2 in the intersection of any 
two of the sets, and number 3 in the intersection of all three sets. The second 
diagram shows count of elements by the formula number of elements in A plus 
the number of elements in B plus the number of elements in C minus the 
number of elements in intersection of A and B minus the number of elements in 
intersection of A and C minus the number of elements in intersection of B and 
C. There is number 1 in exactly one of the three sets and in the intersection of 
any two of the sets, and number 0 in the intersection of all three sets. The third 
diagram shows count of elements by the formula number of elements in A plus 
the number of elements in B plus the number of elements in C minus the 
number of elements in intersection of A and B minus the number of elements in 
intersection of A and C minus the number of elements in intersection of B and C 
plus the number of elements in intersection of A, B, and C. There is number 1 in 
exactly one of the three sets and in all intersections.
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Illustration of Three Finite Set Example – Text 
Alternative

The number of elements for the sets are given below: 

Set S = 1232

Set F = 879

Set R = 114

Intersection of sets S and R = 23

Intersection of sets F and R = 14

Intersection of sets S and F = 103

Union of sets S, F, and R = 2092
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