

Shortest-path Problems

In Graphs

Definition :

The Shortest Path Problem is a fundamental problem in graph theory.

Given a weighted graph

$$G=(V,E,w)$$

where

V = set of vertices

E = set of edges

$w(e)$ = weight/cost/length of edge e

The problem is to find the minimum-cost path between two vertices or between all pairs of vertices

Why shortest path?

Because in real-world systems, we want to minimize:

- distance
- time
- cost
- energy
- risk

Mathematical Objective

For vertices s and t , find path:

$P = (s = v_0, v_1, v_2, \dots, v_k = t)$

that minimizes:

$$w(P) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})$$

Types Of Shortest Path Problems

1. Single-source shortest path

From one vertex s to all others.

Algorithms: BFS, Dijkstra, Bellman-Ford.

2. Single-destination shortest path

To one fixed destination.

3. Single-pair shortest path

Between two vertices.

4. All-pairs shortest path

Between every pair.

Algorithm: Floyd-Warshall.

BFS ALGORITHM

(For unweighted graphs or graphs where each edge has equal weight.)

BFS explores vertices in **layers** (levels).

The first time BFS reaches a vertex gives the **shortest distance in terms of number of edges**.

Works because each edge has weight = 1.

BFS ALGORITHM STEPS

- Initialize all distances = ∞
- Set $\text{distance}[\text{source}] = 0$
- Put source into a queue
- While queue not empty:
 - take a vertex u from queue
 - visit all neighbors v
 - if v is unvisited:
 - $\text{dist}[v] = \text{dist}[u] + 1$
 - $\text{parent}[v] = u$
 - push v into queue
- Continue until all reachable vertices are visited.

Why BFS gives shortest path

Because BFS explores all vertices at distance 1 first, then distance 2, then 3...

It never finds a longer path before exploring all shorter ones.

Dijkstra Algorithem

Dijkstra's Algorithm is a greedy method for finding the shortest paths from a single source to all vertices in a non-negative weighted graph by iteratively picking the nearest unvisited vertex and relaxing its edges.

Dijkstra Algorithem Steps

Steps

1. Initialize distances to ∞ for all vertices
2. $\text{dist}[\text{source}] = 0$
3. Insert (source, 0) into min-priority queue
4. While queue not empty:
 - o extract vertex u with smallest dist
 - o for each neighbor v of u :
 - if $\text{dist}[u] + w(u,v) < \text{dist}[v]$:
 - update $\text{dist}[v]$
 - $\text{parent}[v] = u$
 - push $(v, \text{dist}[v])$ into queue
 - 2. Continue until queue is empty.

Why Dijkstra works

Because when a vertex is removed from the priority queue, its shortest path is **final** (cannot become smaller later).

This is true only when **weights are non-negative**.

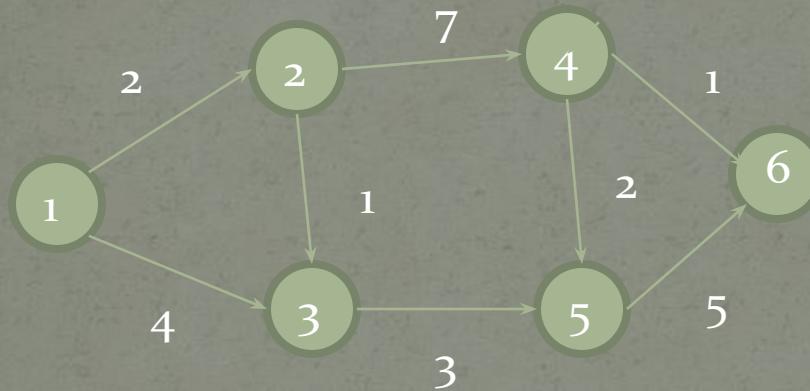
Time Complexity

- With adjacency list + priority queue:

$$O((V+E)\log V)$$

Example: 1

Find the shortest path using Dijkstra algorithem



Sol:

- Step-1:- Initialization (Node 1 is a Source)

$dist[1]=0$

$dist[2...6]=\infty$

$prev[1...6]=\text{null}$

$visited=\{\}$ (none yet)

I'll Present Each Iteration as:

- Pick vertex $u=\text{unvisited vertex with smallest}$
- Relax its outgoing edges $u-v$:
- If $dist[u]+w(u,v) < dist[v]$ then update $dist[v]$ & $prev[v]$

- Step-2:- **Iteration 1**

Pick $u = 1$ (smallest $\text{dist} = 0$).

Relax outgoing edges from 1:

Edge $1 \rightarrow 2$ (2): $\text{dist}[1] + 2 = 0 + 2 = 2$

$\text{dist}[2] = 2$.

$2 < \infty \rightarrow \text{update } \text{dist}[2] = 2, \text{prev}[2] = 1$.

Edge $1 \rightarrow 3$ (4): $\text{dist}[1] + 4 = 0 + 4 = 4$.

$\text{dist}[3] = 4$

$4 < \infty \rightarrow \text{update } \text{dist}[3] = 4, \text{prev}[3] = 1$.

Mark 1 visited.

- Step-3:- Iteration 2

Pick $u = 2$ (smallest unvisited dist = 2).

Relax outgoing edges from 2:

- Edge $2 \rightarrow 3$ (1): $\text{dist}[2] + 1 = 2 + 1 = 3$.

$$\text{dist}[3] = 3$$

Current $\text{dist}[3] = 4$. Since $3 < 4 \rightarrow$ update $\text{dist}[3] = 3$, $\text{prev}[3] = 2$.

- Edge $2 \rightarrow 4$ (7): $\text{dist}[2] + 7 = 2 + 7 = 9$.

$$\text{dist}[4] = 9$$

$9 < \infty \rightarrow$ update $\text{dist}[4] = 9$, $\text{prev}[4] = 2$.

Mark 2 visited.

- Step-4:-Iteration 3

Pick $u = 3$ (smallest unvisited $\text{dist} = 3$).

Relax outgoing edges from 3:

- Edge $3 \rightarrow 5$ (3): $\text{dist}[3] + 3 = 3 + 3 = 6$.
 $6 < \infty \rightarrow \text{update } \text{dist}[5] = 6, \text{prev}[5] = 3$.

No other outgoing from 3. Mark 3 visited.

- Step-5:-Unvisited nodes and dists: 4(9), 5(6), 6(∞).
Pick $u = 5$ (smallest = 6).
Relax outgoing edges from 5:
 - Edge $5 \rightarrow 4$ (2): $\text{dist}[5] + 2 = 6 + 2 = 8$.
Current $\text{dist}[4] = 9$. Since $8 < 9 \rightarrow$ update $\text{dist}[4] = 8$, $\text{prev}[4] = 5$.
 - Edge $5 \rightarrow 6$ (5): $\text{dist}[5] + 5 = 6 + 5 = 11$.
 $11 < \infty \rightarrow$ update $\text{dist}[6] = 11$, $\text{prev}[6] = 5$.

Mark 5 visited.

- Step-6:-Unvisited nodes: 4(8), 6(11).
Pick $u = 4$ (smallest = 8).
Relax outgoing edges from 4:
 - Edge $4 \rightarrow 6$ (1): $\text{dist}[4] + 1 = 8 + 1 = 9$.
Current $\text{dist}[6] = 11$. Since $9 < 11 \rightarrow$ update $\text{dist}[6] = 9$, $\text{prev}[6] = 4$.

Mark 4 visited.

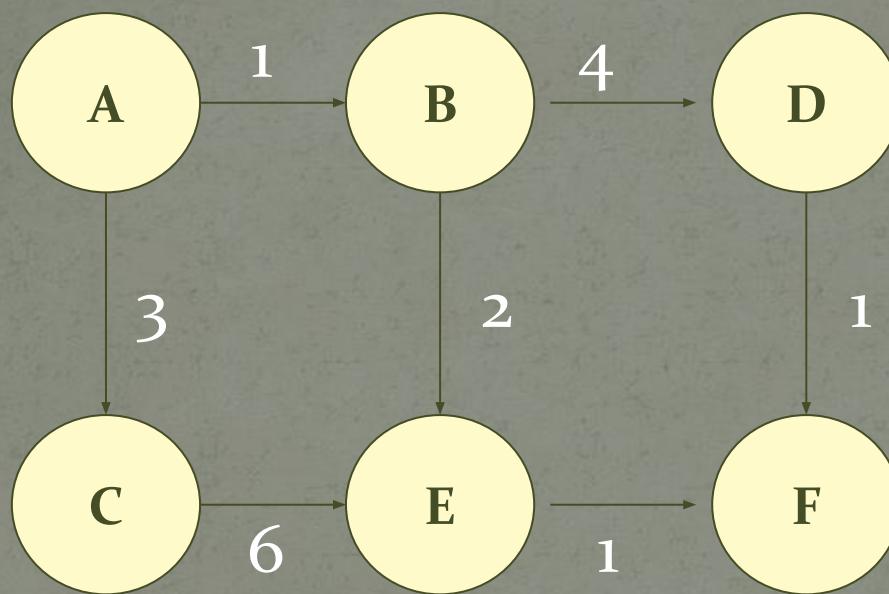
- Step-6:-Iteration 6

Only unvisited node: 6 (dist = 9). Pick $u = 6$. It has no outgoing edges (or no useful ones), so no updates.
Mark 6 visited.

Algorithm ends.

	1	2	3	4	5	6
1	0	2	4	∞	∞	∞
2	∞	2	3	9	∞	∞
3	∞	∞	3	9	6	∞
5	∞	∞	∞	∞	6	11
4	∞	∞	∞	8	6	9
6	∞	∞	∞	∞	∞	∞

EX: 2



Picked Node	dist Updates
A(0)	B=1, C=3
B(1)	E=1+2=3
C(3)	E=min(3, 3+6=9)=3
E(3)	D=3+4=7, F=3+1=4
F(4)	Done

Shortest distance to F = 4

Path reconstruction:

A → B → E → F

FLOYD-WARSHALL ALGORITHM

(All-pairs shortest paths, works with negative weights, but no negative cycles.)

Uses **dynamic programming**.

For each intermediate vertex k , update the shortest path between **every pair** (i, j) using k .

Recursive formula

$$\text{dist}[i][j] = \min(\text{dist}[i][j], \text{dist}[i][k] + \text{dist}[k][j])$$

This statement is the heart of the algorithm.

Steps

1. Create an initial matrix $\text{dist}[i][j]$:
 - $\text{dist}[i][i] = 0$
 - $\text{dist}[i][j] = \text{weight from } i \rightarrow j \text{ (or } \infty \text{ if no edge)}$
2. For each vertex k :
 - For each vertex i :
 - For each vertex j :
 - update $\text{dist}[i][j]$
3. After all iterations, $\text{dist}[i][j]$ contains shortest distances.

Why Floyd-Warshall works

At iteration k , it considers paths that are allowed to use vertices from the set $\{1, 2, \dots, k\}$.

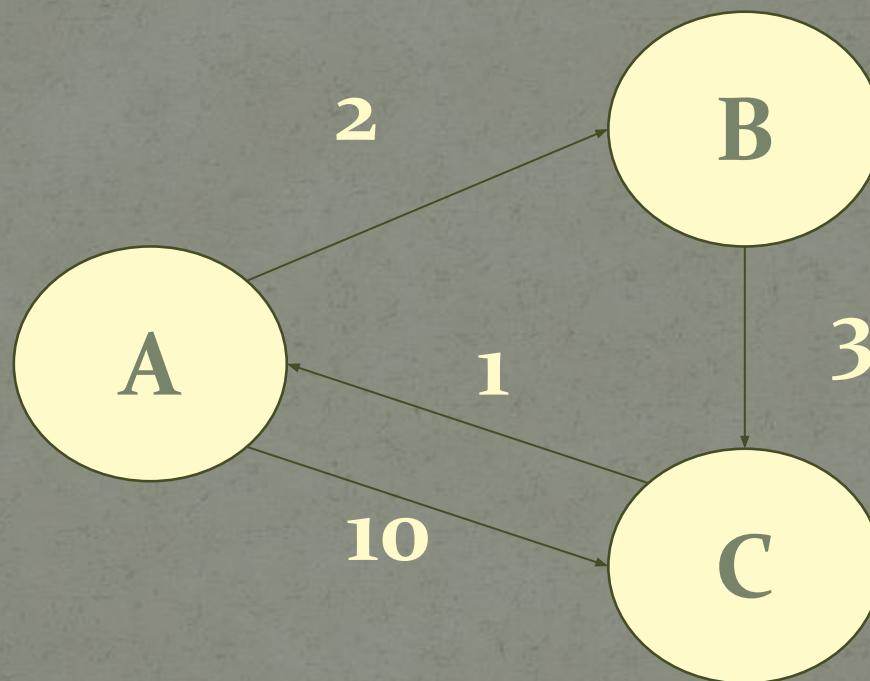
This dynamic programming builds shortest paths in increasing order of allowed intermediate vertices.

Time Complexity

$$O(V^3)$$

Algorithm	Edge Weights	Negative Weights	Negative Cycles	Type of Problem
BFS	equal/unweighted	not allowed	no	Single-Source
Dijkstra	≥ 0	not allowed	no	Single-Source
Bellman-Ford	any	allowed	detected	Single-Source
Floyd-Warshall	any	allowed	no(fails)	all-pairs

EX: Floyd-Warshal



	A	B	C
A	0	2	10
B	∞	0	3
C	1	∞	0

Try $k = A$

No major updates.

Try $k = B$

$A \rightarrow B \rightarrow C$

$2 + 3 = 5 < 10 \rightarrow$ update:

$A \rightarrow C = 5$

Try $k = C$

$C \rightarrow A \rightarrow B$

$1 + 2 = 3 < \infty \rightarrow \text{update:}$

$C \rightarrow B = 3$

Final Matrix

	A	B	C
A	0	2	5
B	4	0	3
C	1	3	0