
In Graphs

Shortest-path Problems

1M.Naga Sravani, Assist Prof



The Shortest Path Problem is a fundamental problem in graph 
theory.
Given a weighted graph

𝐺=(𝑉,𝐸,𝑤)

where 
V = set of vertices
E = set of edges
w(e) = weight/cost/length of edge 𝑒

The problem is to find the minimum-cost path between two 
vertices or between all pairs of vertices
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Definition :



Because in real-world systems, we want to minimize:

● distance

● time

● cost

● energy

● risk
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Why shortest path?



For vertices sss and ttt, find path:

P=(s=v0 ,v1 ,v2 ,...,vk =t)

that minimizes:
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Mathematical Objective



1. Single-source shortest path

From one vertex sss to all others.
 Algorithms: BFS, Dijkstra, Bellman-Ford.

2. Single-destination shortest path

To one fixed destination.

3. Single-pair shortest path

Between two vertices.

4. All-pairs shortest path

Between every pair.
 Algorithm: Floyd–Warshall.
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Types Of Shortest Path Problems



(For unweighted graphs or graphs where each edge has 
equal weight.)

BFS explores vertices in layers (levels).
The first time BFS reaches a vertex gives the shortest 
distance in terms of number of edges.

Works because each edge has weight = 1.
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BFS ALGORITHM



➔ Initialize all distances = ∞

➔ Set distance[source] = 0

➔ Put source into a queue

➔ While queue not empty:

● take a vertex u from 
queue

● visit all neighbors v
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BFS ALGORITHM STEPS

● if v is unvisited:

● dist[v] = dist[u] + 1

● parent[v] = u

● push v into queue

➔ Continue until all 
reachable vertices are 
visited.



Because BFS explores all vertices at 
distance 1 first, then distance 2, then 3…
 It never finds a longer path before 
exploring all shorter ones.
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Why BFS gives shortest path



Dijkstra’s Algorithm is a greedy 
method for finding the shortest 
paths from a single source to all 
vertices in a non-negative weighted 
graph by iteratively picking the 
nearest unvisited vertex and 
relaxing its edges.
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Dijkstra Algorithem



Steps

1. Initialize distances to ∞ for 
all vertices

2. dist[source] = 0

3. Insert (source, 0) into 
min-priority queue

4. While queue not empty:

○ extract vertex u with 
smallest dist
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Dijkstra Algorithem Steps
○ for each neighbor v of u:

 if dist[u] + w(u,v) < dist[v]:

■ update dist[v]

■ parent[v] = u

■ push (v, dist[v]) into 
queue

2. Continue until queue is empty.



Why Dijkstra works

Because when a vertex is removed from the priority queue, its shortest 
path is final (cannot become smaller later).
 This is true only when weights are non-negative.

Time Complexity

● With adjacency list + priority queue:

O((V+E)log V)
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Example: 1
Find the shortest path using Dijkstra 
algorithem
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⚫ Step-1:- Initialization (Node 1 is a Source)
dist[1]=0
dist[2…6]=∞
prev[1…6]=null
visited={} (none yet)

I’ll Present Each Iteration as:
� Pick vertex u=unvisited vertex with smallest
� Relax its outgoing edges u-v:
� If dist[u]+w(u,v)<dist[v] then update dist[v] & prev[v]
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Sol:



⚫ Step-2:- Iteration 1
Pick u = 1 (smallest dist = 0).
Relax outgoing edges from 1:
Edge 1 → 2 (2): dist[1] + 2 = 0 + 2=2

dist[2] = 2.
2 < ∞ → update dist[2] = 2, prev[2] = 1.

Edge 1 → 3 (4): dist[1] + 4 = 0 + 4 = 4.
 dist[3]=4 

4 < ∞ → update dist[3] = 4, prev[3] = 1.
Mark 1 visited.
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⚫ Step-3:- Iteration 2

Pick u = 2 (smallest unvisited dist = 2).
 Relax outgoing edges from 2:

● Edge 2 → 3 (1): dist[2] + 1 = 2 + 1 = 3.

dist[3]=3
 Current dist[3] = 4. Since 3 < 4 → update dist[3] = 
3, prev[3] = 2.

● Edge 2 → 4 (7): dist[2] + 7 = 2 + 7 = 9.

dist[4]=9
 9 < ∞ → update dist[4] = 9, prev[4] = 2.

Mark 2 visited.
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⚫ Step-4:-Iteration 3

Pick u = 3 (smallest unvisited dist = 3).
 Relax outgoing edges from 3:

● Edge 3 → 5 (3): dist[3] + 3 = 3 + 3 = 6.
 6 < ∞ → update dist[5] = 6, prev[5] = 3.

No other outgoing from 3. Mark 3 visited.
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⚫ Step-5:-Unvisited nodes and dists: 4(9), 5(6), 6(∞).
 Pick u = 5 (smallest = 6).

 Relax outgoing edges from 5:
● Edge 5 → 4 (2): dist[5] + 2 = 6 + 2 = 8.

 Current dist[4] = 9. Since 8 < 9 → update 
dist[4] = 8, prev[4] = 5.

● Edge 5 → 6 (5): dist[5] + 5 = 6 + 5 = 11.
 11 < ∞ → update dist[6] = 11, prev[6] = 5.

Mark 5 visited.
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⚫ Step-6:-Unvisited nodes: 4(8), 6(11).
 Pick u = 4 (smallest = 8).
 Relax outgoing edges from 4:

● Edge 4 → 6 (1): dist[4] + 1 = 8 + 1 = 9.
 Current dist[6] = 11. Since 9 < 11 → update 
dist[6] = 9, prev[6] = 4.

Mark 4 visited.
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⚫ Step-6:-Iteration 6

Only unvisited node: 6 (dist = 9). Pick u = 6. It has no 
outgoing edges (or no useful ones), so no updates. 
Mark 6 visited. 

Algorithm ends.
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EX: 2
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Picked 
Node

dist Updates

A(0) B=1, C=3

B(1) E=1+2=3

C(3) E=min(3, 3+6=9)=3

E(3) D=3+4=7, F=3+1=4

F(4) Done

Shortest distance to F = 4

Path reconstruction:
A → B → E → F
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(All-pairs shortest paths, works with negative weights, but 
no negative cycles.)

Uses dynamic programming.

For each intermediate vertex k, update the shortest path 
between every pair (i, j) using k.

FLOYD–WARSHALL ALGORITHM
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Recursive formula
dist[i][j]=min (dist[i][j], dist[i][k]+dist[k][j])

This statement is the heart of the algorithm.

Steps

1. Create an initial matrix dist[i][j]:

○ dist[i][i] = 0

○ dist[i][j] = weight from i→j (or ∞ if no edge)

2. For each vertex k:
 For each vertex i:
 For each vertex j:
 update dist[i][j]

3. After all iterations, dist[i][j] contains shortest distances.
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Why Floyd-Warshall works
At iteration k, it considers paths that are allowed 
to use vertices from the set {1, 2, ..., k}.
 This dynamic programming builds shortest paths 
in increasing order of allowed intermediate 
vertices.

Time Complexity
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Algorithm
Edge 

Weights
Negative 
Weights

Negative 
Cycles

Type of 
Problem

BFS
equal/unw

eighted
not 

allowed no Single-Sou
rce

Dijkstra ≥0 not 
allowed no Single-Sou

rce

Bellman–For
d any allowed detected Single-Sou

rce

Floyd–Warsh
all any allowed no(fails) all-pairs
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EX: Floyd-Warshal
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28

      A   B   C
A     0   2  10
B     ∞   0   3
C     1   ∞   0

Try k = A

No major updates.

Try k = B

A → B → C
 2 + 3 = 5 < 10 → update:

A→C = 5
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Try k = C

C → A → B
 1 + 2 = 3 < ∞ → update:

C→B = 3

Final Matrix

     A   B   C

A     0   2   5

B     4   0   3

C     1   3   0


