


Definition :

The Shortest Path Problem is a fundamental problem in graph
theory.

Given a weighted graph
G=(V,E,w)

where

V = set of vertices

E = set of edges

w(e) = weight/cost/length of edge e

The problem is to find the minimum-cost path between two
vertices or between all pairs of vertices



Why shortest path?

Because in real-world systems, we want to minimize:

e distance
e time

® (ost

® energy

® risk



Mathematical Objective

For vertices sss and ttt, find path:
P=(s=vo,v1,v2,...,vk=t)

that minimizes:




Types Of Shortest Path Problems

1. Single-source shortest path

From one vertex sss to all others.
Algorithms: BFS, Dijkstra, Bellman-Ford.

2. Single-destination shortest path
To one fixed destination.

3. Single-pair shortest path
Between two vertices.

4. All-pairs shortest path

Between every pair.
Algorithm: Floyd—-Warshall.



BFS ALGORITHM

(For unweighted graphs or graphs where each edge has
equal weight.)

BFS explores vertices in layers (levels).

The first time BFS reaches a vertex gives the shortest
distance in terms of number of edges.

Works because each edge has weight = 1.



BFS ALGORITHM STEPS

Initialize all distances = oo if v is unvisited:

Set distance[source] = o dist[v] = dist[u] + 1
Put source into a queue parent[v] = u
While queue not empty:

push v into queue

take a vertex u from
queue

Continue until all
reachable vertices are

visit all neighbors v el



Why BFS gives shortest path

Because BFS explores all vertices at
distance 1 first, then distance 2, then 3...
[t never finds a longer path before
exploring all shorter ones.



Dijkstra Algorithem

Dijkstra’s Algorithm is a greedy
method for finding the shortest
paths from a single source to all
vertices in a non-negative weighted
graph by iteratively picking the
nearest unvisited vertex and
relaxing its edges.
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Dijkstra Algorithem Steps

Steps o for each neighbor v of u:

if dist[u] + w(u,v) < dist[v]:

1. Initialize distances to o for

all vertices s update dist[v]

2. dist[source] =0 m parent[v]=u

3. Insert (source, 0) into m push (v, dist[v]) into
min-priority queue queue

4. While queue not empty: 2. Continue until queue is empty.

o extract vertex u with
smallest dist
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Why Dijkstra works

Because when a vertex is removed from the priority queue, its shortest
path is final (cannot become smaller later).
This is true only when weights are non-negative.

Time Complexity

e With adjacency list + priority queue:

O((V+E)logV)
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Sol:

Step-1:- Initialization (Node 1 is a Source)
dist[1]=0
dist[2...6]=0
prev[1...6]=null
visited={} (none yet)
I'll Present Each Iteration as:

Pick vertex u=unvisited vertex with smallest

Relax its outgoing edges u-v:

If dist[u]+w(u,v)<dist[v] then update dist[v] & prev|v]
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Step-2:- Iteration 1

Pick u =1 (smallest dist = 0).
Relax outgoing edges from 1:

Edge1— 2 (2): dist[1] + 2 = 0 + 2=2

dist[2] = 2.
2 < oo — update dist[2] = 2, prev[2] = 1.

Edge1— 3 (4): dist[1] + 4 = 0 + 4 = 4.

dist[3]=4
4 < oo — update dist[3] = 4, prev[3] = 1.

Mark 1 visited.
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Step-3:- Iteration 2

Pick u = 2 (smallest unvisited dist = 2).
Relax outgoing edges from 2:

e Edge2—3(1):dist[l2] +1=2+1=3.

dist[3]=3
Current dist[3] = 4. Since 3 < 4 — update dist[3] =
3» PFEV[B] = 2.

e Edgez2— 4 (7):dist[2] +7=2+7=09.
dist[4]=9
9 < oo — update dist[4] = 9, prev[4] = 2.

Mark 2 visited.
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Step-4:-Iteration 3

Pick u = 3 (smallest unvisited dist = 3).
Relax outgoing edges from 3:

e Edge3— 5(3):dist[3] +3=3+3=6.

6 < oo — update dist[5] = 6, prev|5] = 3.

No other outgoing from 3. Mark 3 visited.
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Step-5:-Unvisited nodes and dists: 4(9), 5(6), 6(<0).
Pick u = 5 (smallest = 6).
Relax outgoing edges from 5:
e Edges— 4 (2):dist[5] +2=6+2=38.
Current dist[4] = 9. Since 8 < 9 — update

dist[4] = 8, prev[4] = 5.

e Edges— 6(5):dist[5] +5=6+5=n1.
11 < o0 — update dist[6] = 11, prev|6] = 5.

Mark 5 visited.
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Step-6:-Unvisited nodes: 4(8), 6(11).
Pick u = 4 (smallest = 8).
Relax outgoing edges from 4:
e Edgeq4 — 6(1):dist[4] +1=8 +1=0.
Current dist[6] = 11. Since 9 < 11 — update
dist[6] = 9, prev|6] = 4.

Mark 4 visited.
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Step-6:-Iteration 6

Only unvisited node: 6 (dist = 9). Pick u = 6. It has no
outgoing edges (or no useful ones), so no updates.
Mark 6 visited.

Algorithm ends.
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EX: 2
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Picked dist Updates
Node

A(o) B=1, C=3

B(1) E=1+2=3

C(3) E=min(3, 3+6=9)=3
E(3) D=3+4=7, F=3+1=4
F(4) Done

Shortest distance to F = 4

Path reconstruction:
A—->B—DE—>DF
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FLOYD-WARSHALL ALGORITHM

(All-pairs shortest paths, works with negative weights, but
no negative cycles.)

Uses dynamic programming.

For each intermediate vertex k, update the shortest path
between every pair (i, j) using k.
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Recursive formula
dist[i][j]=min(dist[i][j], dist[i][k]+dist[k][j])

This statement is the heart of the algorithm.

Steps
1. Create an initial matrix dist[i][j]:
o dist[i][i] =0
o dist[i][j] = weight from i—j (or o< if no edge)
2. For each vertex k:
For each vertex i:
For each vertex j:

update dist[i][j]

3. Afterall iterations, dist[i][j] contains shortest distances.
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Why Floyd-Warshall works

At iteration k, it considers paths that are allowed
to use vertices from the set {1, 2, ..., k}.

This dynamic programming builds shortest paths
in increasing order of allowed intermediate
vertices.

Time Complexity
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Algorithm

BFS

Dijkstra

Bellman-For

d

Floyd-Warsh
all

Edge
Weights

equal/unw

eighted

any

any

Negative
Weights

not
allowed

not
allowed

allowed

allowed

Negative
Cycles

no

no

detected

no(fails)

Type of
Problem

Single-Sou
rce

Single-Sou
rce

Single-Sou
rce

all-pairs
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EX: Floyd-Warshal

2

° 1

10

3










