
In Graphs

Shortest-path Problems

1M.Naga Sravani, Assist Prof

The Shortest Path Problem is a fundamental problem in graph
theory.
Given a weighted graph

𝐺=(𝑉,𝐸,𝑤)

where
V = set of vertices
E = set of edges
w(e) = weight/cost/length of edge 𝑒

The problem is to find the minimum-cost path between two
vertices or between all pairs of vertices

2

Definition :

Because in real-world systems, we want to minimize:

● distance

● time

● cost

● energy

● risk

3

Why shortest path?

For vertices sss and ttt, find path:

P=(s=v0 ,v1 ,v2 ,...,vk =t)

that minimizes:

4

Mathematical Objective

1. Single-source shortest path

From one vertex sss to all others.
 Algorithms: BFS, Dijkstra, Bellman-Ford.

2. Single-destination shortest path

To one fixed destination.

3. Single-pair shortest path

Between two vertices.

4. All-pairs shortest path

Between every pair.
 Algorithm: Floyd–Warshall.

5

Types Of Shortest Path Problems

(For unweighted graphs or graphs where each edge has
equal weight.)

BFS explores vertices in layers (levels).
The first time BFS reaches a vertex gives the shortest
distance in terms of number of edges.

Works because each edge has weight = 1.

6

BFS ALGORITHM

➔ Initialize all distances = ∞

➔ Set distance[source] = 0

➔ Put source into a queue

➔ While queue not empty:

● take a vertex u from
queue

● visit all neighbors v

7

BFS ALGORITHM STEPS

● if v is unvisited:

● dist[v] = dist[u] + 1

● parent[v] = u

● push v into queue

➔ Continue until all
reachable vertices are
visited.

Because BFS explores all vertices at
distance 1 first, then distance 2, then 3…
 It never finds a longer path before
exploring all shorter ones.

8

Why BFS gives shortest path

Dijkstra’s Algorithm is a greedy
method for finding the shortest
paths from a single source to all
vertices in a non-negative weighted
graph by iteratively picking the
nearest unvisited vertex and
relaxing its edges.

9M.Naga Sravani, Assist Prof

Dijkstra Algorithem

Steps

1. Initialize distances to ∞ for
all vertices

2. dist[source] = 0

3. Insert (source, 0) into
min-priority queue

4. While queue not empty:

○ extract vertex u with
smallest dist

10M.Naga Sravani, Assist Prof

Dijkstra Algorithem Steps
○ for each neighbor v of u:

 if dist[u] + w(u,v) < dist[v]:

■ update dist[v]

■ parent[v] = u

■ push (v, dist[v]) into
queue

2. Continue until queue is empty.

Why Dijkstra works

Because when a vertex is removed from the priority queue, its shortest
path is final (cannot become smaller later).
 This is true only when weights are non-negative.

Time Complexity

● With adjacency list + priority queue:

O((V+E)log V)

11M.Naga Sravani, Assist Prof

M.Naga Sravani, Assist Prof 12

Example: 1
Find the shortest path using Dijkstra
algorithem

1

2 4

53

6

2
7

1

2

4
3

5

1

⚫ Step-1:- Initialization (Node 1 is a Source)
dist[1]=0
dist[2…6]=∞
prev[1…6]=null
visited={} (none yet)

I’ll Present Each Iteration as:
� Pick vertex u=unvisited vertex with smallest
� Relax its outgoing edges u-v:
� If dist[u]+w(u,v)<dist[v] then update dist[v] & prev[v]

13M.Naga Sravani, Assist Prof

Sol:

⚫ Step-2:- Iteration 1
Pick u = 1 (smallest dist = 0).
Relax outgoing edges from 1:
Edge 1 → 2 (2): dist[1] + 2 = 0 + 2=2

dist[2] = 2.
2 < ∞ → update dist[2] = 2, prev[2] = 1.

Edge 1 → 3 (4): dist[1] + 4 = 0 + 4 = 4.
 dist[3]=4

4 < ∞ → update dist[3] = 4, prev[3] = 1.
Mark 1 visited.

14M.Naga Sravani, Assist Prof

⚫ Step-3:- Iteration 2

Pick u = 2 (smallest unvisited dist = 2).
 Relax outgoing edges from 2:

● Edge 2 → 3 (1): dist[2] + 1 = 2 + 1 = 3.

dist[3]=3
 Current dist[3] = 4. Since 3 < 4 → update dist[3] =
3, prev[3] = 2.

● Edge 2 → 4 (7): dist[2] + 7 = 2 + 7 = 9.

dist[4]=9
 9 < ∞ → update dist[4] = 9, prev[4] = 2.

Mark 2 visited.

15M.Naga Sravani, Assist Prof

⚫ Step-4:-Iteration 3

Pick u = 3 (smallest unvisited dist = 3).
 Relax outgoing edges from 3:

● Edge 3 → 5 (3): dist[3] + 3 = 3 + 3 = 6.
 6 < ∞ → update dist[5] = 6, prev[5] = 3.

No other outgoing from 3. Mark 3 visited.

16M.Naga Sravani, Assist Prof

⚫ Step-5:-Unvisited nodes and dists: 4(9), 5(6), 6(∞).
 Pick u = 5 (smallest = 6).

 Relax outgoing edges from 5:
● Edge 5 → 4 (2): dist[5] + 2 = 6 + 2 = 8.

 Current dist[4] = 9. Since 8 < 9 → update
dist[4] = 8, prev[4] = 5.

● Edge 5 → 6 (5): dist[5] + 5 = 6 + 5 = 11.
 11 < ∞ → update dist[6] = 11, prev[6] = 5.

Mark 5 visited.

17M.Naga Sravani, Assist Prof

⚫ Step-6:-Unvisited nodes: 4(8), 6(11).
 Pick u = 4 (smallest = 8).
 Relax outgoing edges from 4:

● Edge 4 → 6 (1): dist[4] + 1 = 8 + 1 = 9.
 Current dist[6] = 11. Since 9 < 11 → update
dist[6] = 9, prev[6] = 4.

Mark 4 visited.

18M.Naga Sravani, Assist Prof

⚫ Step-6:-Iteration 6

Only unvisited node: 6 (dist = 9). Pick u = 6. It has no
outgoing edges (or no useful ones), so no updates.
Mark 6 visited.

Algorithm ends.

19M.Naga Sravani, Assist Prof

20

1

2

3

5

4

6

1 2 3 4 5 6

0 2 4 ∞ ∞ ∞

∞

∞

∞

∞

∞

2

∞

∞

∞

∞

3

3

∞

∞

∞

9 ∞ ∞

9 6 ∞

∞ 6 11

8 6 9

∞ ∞ ∞

21

EX: 2

A

F

D

E

B

C

1

16

3 2 1

4

22

Picked
Node

dist Updates

A(0) B=1, C=3

B(1) E=1+2=3

C(3) E=min(3, 3+6=9)=3

E(3) D=3+4=7, F=3+1=4

F(4) Done

Shortest distance to F = 4

Path reconstruction:
A → B → E → F

23

(All-pairs shortest paths, works with negative weights, but
no negative cycles.)

Uses dynamic programming.

For each intermediate vertex k, update the shortest path
between every pair (i, j) using k.

FLOYD–WARSHALL ALGORITHM

24

Recursive formula
dist[i][j]=min (dist[i][j], dist[i][k]+dist[k][j])

This statement is the heart of the algorithm.

Steps

1. Create an initial matrix dist[i][j]:

○ dist[i][i] = 0

○ dist[i][j] = weight from i→j (or ∞ if no edge)

2. For each vertex k:
 For each vertex i:
 For each vertex j:
 update dist[i][j]

3. After all iterations, dist[i][j] contains shortest distances.

25

Why Floyd-Warshall works
At iteration k, it considers paths that are allowed
to use vertices from the set {1, 2, ..., k}.
 This dynamic programming builds shortest paths
in increasing order of allowed intermediate
vertices.

Time Complexity

26

Algorithm
Edge

Weights
Negative
Weights

Negative
Cycles

Type of
Problem

BFS
equal/unw

eighted
not

allowed no Single-Sou
rce

Dijkstra ≥0 not
allowed no Single-Sou

rce

Bellman–For
d any allowed detected Single-Sou

rce

Floyd–Warsh
all any allowed no(fails) all-pairs

27

EX: Floyd-Warshal

A

B

C

2

1

10

3

28

 A B C
A 0 2 10
B ∞ 0 3
C 1 ∞ 0

Try k = A

No major updates.

Try k = B

A → B → C
 2 + 3 = 5 < 10 → update:

A→C = 5

29

Try k = C

C → A → B
 1 + 2 = 3 < ∞ → update:

C→B = 3

Final Matrix

 A B C

A 0 2 5

B 4 0 3

C 1 3 0

