


Definition :

The Shortest Path Problem is a fundamental problem in graph
theory.

Given a weighted graph
G=(V,E,w)

where

V = set of vertices

E = set of edges

w(e) = weight/cost/length of edge e

The problem is to find the minimum-cost path between two
vertices or between all pairs of vertices



Why shortest path?

Because in real-world systems, we want to minimize:

e distance
e time

® (ost

® energy

® risk



Mathematical Objective

For vertices sss and ttt, find path:
P=(s=vo,v1,v2,...,vk=t)

that minimizes:




Types Of Shortest Path Problems

1. Single-source shortest path

From one vertex sss to all others.
Algorithms: BFS, Dijkstra, Bellman-Ford.

2. Single-destination shortest path
To one fixed destination.

3. Single-pair shortest path
Between two vertices.

4. All-pairs shortest path

Between every pair.
Algorithm: Floyd—-Warshall.



BFS ALGORITHM

(For unweighted graphs or graphs where each edge has
equal weight.)

BFS explores vertices in layers (levels).

The first time BFS reaches a vertex gives the shortest
distance in terms of number of edges.

Works because each edge has weight = 1.



BFS ALGORITHM STEPS

Initialize all distances = oo if v is unvisited:

Set distance[source] = o dist[v] = dist[u] + 1
Put source into a queue parent[v] = u
While queue not empty:

push v into queue

take a vertex u from
queue

Continue until all
reachable vertices are

visit all neighbors v el



Why BFS gives shortest path

Because BFS explores all vertices at
distance 1 first, then distance 2, then 3...
[t never finds a longer path before
exploring all shorter ones.



Dijkstra Algorithem

Dijkstra’s Algorithm is a greedy
method for finding the shortest
paths from a single source to all
vertices in a non-negative weighted
graph by iteratively picking the
nearest unvisited vertex and
relaxing its edges.

M.Naga Sravani, Assist Prof



Dijkstra Algorithem Steps

Steps o for each neighbor v of u:

if dist[u] + w(u,v) < dist[v]:

1. Initialize distances to o for

all vertices s update dist[v]

2. dist[source] =0 m parent[v]=u

3. Insert (source, 0) into m push (v, dist[v]) into
min-priority queue queue

4. While queue not empty: 2. Continue until queue is empty.

o extract vertex u with
smallest dist

M.Naga Sravani, Assist Prof

10



Why Dijkstra works

Because when a vertex is removed from the priority queue, its shortest
path is final (cannot become smaller later).
This is true only when weights are non-negative.

Time Complexity

e With adjacency list + priority queue:

O((V+E)logV)

M.Naga Sravani, Assist Prof

11






Sol:

Step-1:- Initialization (Node 1 is a Source)
dist[1]=0
dist[2...6]=0
prev[1...6]=null
visited={} (none yet)
I'll Present Each Iteration as:

Pick vertex u=unvisited vertex with smallest

Relax its outgoing edges u-v:

If dist[u]+w(u,v)<dist[v] then update dist[v] & prev|v]

M.Naga Sravani, Assist Prof

13



Step-2:- Iteration 1

Pick u =1 (smallest dist = 0).
Relax outgoing edges from 1:

Edge1— 2 (2): dist[1] + 2 = 0 + 2=2

dist[2] = 2.
2 < oo — update dist[2] = 2, prev[2] = 1.

Edge1— 3 (4): dist[1] + 4 = 0 + 4 = 4.

dist[3]=4
4 < oo — update dist[3] = 4, prev[3] = 1.

Mark 1 visited.

M.Naga Sravani, Assist Prof

14



Step-3:- Iteration 2

Pick u = 2 (smallest unvisited dist = 2).
Relax outgoing edges from 2:

e Edge2—3(1):dist[l2] +1=2+1=3.

dist[3]=3
Current dist[3] = 4. Since 3 < 4 — update dist[3] =
3» PFEV[B] = 2.

e Edgez2— 4 (7):dist[2] +7=2+7=09.
dist[4]=9
9 < oo — update dist[4] = 9, prev[4] = 2.

Mark 2 visited.

M.Naga Sravani, Assist Prof 15



Step-4:-Iteration 3

Pick u = 3 (smallest unvisited dist = 3).
Relax outgoing edges from 3:

e Edge3— 5(3):dist[3] +3=3+3=6.

6 < oo — update dist[5] = 6, prev|5] = 3.

No other outgoing from 3. Mark 3 visited.

M.Naga Sravani, Assist Prof

16



Step-5:-Unvisited nodes and dists: 4(9), 5(6), 6(<0).
Pick u = 5 (smallest = 6).
Relax outgoing edges from 5:
e Edges— 4 (2):dist[5] +2=6+2=38.
Current dist[4] = 9. Since 8 < 9 — update

dist[4] = 8, prev[4] = 5.

e Edges— 6(5):dist[5] +5=6+5=n1.
11 < o0 — update dist[6] = 11, prev|6] = 5.

Mark 5 visited.

M.Naga Sravani, Assist Prof 17



Step-6:-Unvisited nodes: 4(8), 6(11).
Pick u = 4 (smallest = 8).
Relax outgoing edges from 4:
e Edgeq4 — 6(1):dist[4] +1=8 +1=0.
Current dist[6] = 11. Since 9 < 11 — update
dist[6] = 9, prev|6] = 4.

Mark 4 visited.

M.Naga Sravani, Assist Prof

18



Step-6:-Iteration 6

Only unvisited node: 6 (dist = 9). Pick u = 6. It has no
outgoing edges (or no useful ones), so no updates.
Mark 6 visited.

Algorithm ends.

M.Naga Sravani, Assist Prof 19






EX: 2

21



Picked dist Updates
Node

A(o) B=1, C=3

B(1) E=1+2=3

C(3) E=min(3, 3+6=9)=3
E(3) D=3+4=7, F=3+1=4
F(4) Done

Shortest distance to F = 4

Path reconstruction:
A—->B—DE—>DF

22



FLOYD-WARSHALL ALGORITHM

(All-pairs shortest paths, works with negative weights, but
no negative cycles.)

Uses dynamic programming.

For each intermediate vertex k, update the shortest path
between every pair (i, j) using k.

23



Recursive formula
dist[i][j]=min(dist[i][j], dist[i][k]+dist[k][j])

This statement is the heart of the algorithm.

Steps
1. Create an initial matrix dist[i][j]:
o dist[i][i] =0
o dist[i][j] = weight from i—j (or o< if no edge)
2. For each vertex k:
For each vertex i:
For each vertex j:

update dist[i][j]

3. Afterall iterations, dist[i][j] contains shortest distances.

24



Why Floyd-Warshall works

At iteration k, it considers paths that are allowed
to use vertices from the set {1, 2, ..., k}.

This dynamic programming builds shortest paths
in increasing order of allowed intermediate
vertices.

Time Complexity

2>



Algorithm

BFS

Dijkstra

Bellman-For

d

Floyd-Warsh
all

Edge
Weights

equal/unw

eighted

any

any

Negative
Weights

not
allowed

not
allowed

allowed

allowed

Negative
Cycles

no

no

detected

no(fails)

Type of
Problem

Single-Sou
rce

Single-Sou
rce

Single-Sou
rce

all-pairs

26



EX: Floyd-Warshal

2

° 1

10

3










