Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

1 5 10 17

-age waiting time = [(10-1)+(1-1)+(17-2)+(5-3)))/4 = 26/4 = 6.5 r
:ess P1 is started at time 0, since it is the only process in
:.ess P2 arrives at time 1.

remaining time for process P71 (7 milliseconds) is larger th:
ired by process P2 (4 milliseconds), so process P17 is pree
ess P2 is scheduled.
average waiting time for this example is ((10 - 1) + (1 1) A
/4 = 26/4 = 6.5 milliseconds.

preemptive SJF scheduling would result in an average wai
milliseconds.
»an only estimate the length
»an be done by using the length of previous CPU bursts, using

veraging

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

- -

|

Let us consider an example of a multilevel queue-scheduling algorithm with five
queues:

—

. System Processes

Interactive Processes

N

3. Interactive Editing Processes
Batch Processes

Student Processes

Each queue has absolute priority over lower-priority queues.

No process in the batch queue, for example, could run unless the queues for
system processes, interactive processes, and interactive editing processes
were all empty.

» If an interactive editing process entered the ready queue while a batch
process was running, the batch process will be preempted.

Vv O &

Highest priority

m ’
interactive processes

interactive editing processes

Lowest priority

Figure: Multilevel queue scheduling.

» Another possibility is to time-slice among the queues.
» Here, each queue gets a certain portion of the CPU time, which it can then
schedule among its various processes.

. ® -

Scanned with CamScanner

Scanne d with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

. sibl
» If multiple CPUs are available, load sharing among them becomes possible

» The scheduling problem becomes more complex. . -
» We concentrate in this discussion on systems in which the process 3

identical (homogeneous) in terms of their functionality.
» We can use any available processor to run any process in the P
1.Approaches to Multiple-Processor Scheduling:
* One approach to CPU scheduling in a multiprocessor system has all

scheduling decisions, 1/0 processing, and other system activities handled

by a single processor-the master server.
» The other processors execute only user code.
» CPU scheduling more complex when multiple CPUs are available

» Homogeneous processors within a multiprocessor
» Two approaches: Asymmetric processing and symmetric processing.

» Asymmetric multiprocessing |
» Symmetric multiprocessing (SMP) Processor affinity — process has affinity

for processor on which it is currently running

» soft affinity
» hard affinity

Asymmetric multiprocessing (ASMP)

» One processor handles all scheduling decisions, 1/0 processing, and other

system activities
» The other processors execute only user code
» Because only one processor accesses the system data structures, the need

for data sharing is reduced
Symmetric multiprocessing (SMP)

» Each processor schedules itself
> All processes may be in a common ready queue or each processor may have

its own ready queue
» Either way, each processor examines the ready queue and selects a process

to execute
j iﬁﬁﬂlﬂ” °1the CPUs requires load balancing to keep the workioad evenly
] l,:aZspau:dhr:d'igsr:izrt'ezptﬁr:xhié:gimxs?;':x checks the processor
’ cl:l:u: tc::lan;g;tmch' an idle processor pulls 3 waiting job from the

Scanned with CamScanner

Scanne d with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

OPERATING SYSTEM (UNIT-2)

CHAPTER -6

Process Synchronization
TOPICS:

The critical = section problem
Synchronization Hardware
Semaphores

Classic problems of synchronization
Critical Regions

Monitors

Introduction to process synchronization:

Process Synchronization was introduced to handle problems that arose while multiple
process executions.

Process is categorized into two types on the basis of synchronization and these are
given below:

« Independent Process
« Cooperative Process

Independent Processes

Two processes are said to be independent if the execution of one process does not
affect the execution of another process.

Cooperative Processes

Two processes are said to be cooperative if the execution of one process affects the
execution of another process. These processes need to be synchronized so that the
order of execution can be guaranteed.

It is the task phenomenon of coordinating the execution of processes in such a way that
no two processes can have access to the same shared data and resources.

o It is a procedure that is involved in order to preserve the appropriate order of
execution of cooperative processes.

« In order to synchronize the processes, there are various synchronization
mechanisms.

« Process Synchronization is mainly needed in a multi-process system when
multiple processes are running together, and more than one processes try to
gain access to the same shared resource or any data at the same time.

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 1

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

« Process synchronization is the technique to overcome the problem of concurrent
access to shared data which can result in data inconsistency. A cooperating
process is the one which can affect or be affected by other process which will
lead to inconsistency in processes data therefore Process synchronization is
required for consistency of data.

*e

«+ The Critical-Section Problem:

e Every process has a reserved segment of code which is known as Critical
Section. In this section, process can change common variables, update tables,
write files, etc.

e The key point to note about critical section is that when one process is executing
in its critical section, no other process can execute in its critical section.

e Each process must request for permission before entering into its critical section
and the section of a code implementing this request is the Entry Section, the
end of the code is the Exit Section and the remaining code is the remainder
section.

o A Critical Section is a code segment that accesses shared variables and has to
be executed as an atomic action. It means that in a group of cooperating
processes, at a given point of time, only one process must be executing its
critical section.

» If any other process also wants to execute its critical section, it must wait until the
first one finishes.

* The entry to the critical section is mainly handled by wait() function while the exit
from the critical section is controlled by the signal() function.

controls the entry into critical
dO { section and gets a LOCK on
required resources

entry section ‘—/

critical section €—— the critical part
removes the LOCK
from the resources - -
and letthe others ———P» | eXxit section
know that its critical
section is over
remainder section 44— restofthe section

} while (TRUE);

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 2

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

Entry Section
¢ In this section mainly the process requests for its entry in the critical section.
Exit Section

e This section is followed by the critical section.

The solution to the Critical Section Problem

A solution to the critical section problem must satisfy the following three conditions:

1. Mutual Exclusion

Out of a group of cooperating processes, only one process can be in its critical section
at a given point of time.

2. Progress

If no process is in its critical section, and if one or more threads want to execute their
critical section then any one of these threads must be allowed to get into its critical
section.

3. Bounded Waiting

After a process makes a request for getting into its critical section, there is a limit for
how many other processes can get into their critical section, before this process's
request is granted. So after the limit is reached, the system must grant the process
permission to get into its critical section.

Synchronization Hardware:
It is implemented using two types of instructions -

« Test and Set()
« swap()

Test and Set () is a hardware solution to solve the problem of synchronization. In this,
there is a shared variable which is shared by multiple processes known as Lock which
can have one value from 0 and 1 where 1 represents Lock gained and O represents
Lock released.

Whenever the process is trying to enter their critical sections they need to enquire about
the value of lock. If the value of lock is 1 then they have to wait until the value of lock
won't get changed to 0.

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 3

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

Given below is the mutual-exclusion implementation with TestAndSet()

do

{
while(TestAndSetLock(& lock))

; //do nothing
Critical section

Lock = FALSE;
Remainder section

}while(TRUE);

e In Synchronization hardware, we explore several more solutions to the critical-
section problem using techniques ranging from hardware to software based APls
available to application programmers.

e These solutions are based on the premise of locking; however, the design of
such locks can be quite sophisticated.

e These Hardware features can make any programming task easier and improve
system efficiency. Here, we present some simple hardware instructions that are
available on many systems and show how they can be used effectively in solving
the critical-section problem.

o If we could prevent interrupts from occurring while a shared variable was being
modified. The critical-section problem could be solved simply in a uniprocessor
environment.

* In this manner, we would be assuring that the current sequence of instructions
would be allowed to execute in order without preemption. No other instructions
would be run, so no unexpected modifications could be made to the shared
variable.

e This is the approach taken by non-preemptive kernels. But unfortunately, this
solution is not as feasible in a multiprocessor environment. Since the message is
passed to all the processors, disabling interrupts on a multiprocessor can be time
consuming.

*» We may use these special instructions to solve the critical-section problem in a
relatively simple manner. Now we abstract the main concepts behind these types
of instructions. The TestAndSet() instruction can be defined as shown in below
code.

boolean test and set (boolean *target) {

boolean rv = *target;

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 4

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

*target = true;
return rv;

}

Definition of the test and set() instruction.

The essential characteristic is that this instruction is executed atomically. So, if two
TestAndSet C) instructions are executed simultaneously (each on a different CPU), they
will be executed sequentially in some arbitrary order. we can implement mutual
exclusion by declaring a Boolean variable lock, initialized to false, if the machine
supports the TestAndSet () instruction.

Semaphores:

Semaphores

Semaphore is a synchronization tool that is used to overcome the problems generated
by TestAndSet() and Swap() instructions. A semaphore S is an integer variable that can
be accessed through two standard atomic operations that are wait() and signal()

Function for wait():

wait (S) {
While S <= 0
; // no operation
S--;

}

Function for Signal():

signal (S) {
S++;

}

When one process is modifying the value of semaphore then no other process can
simultaneously manipulate the same semaphore value.

Usage

Operating systems often distinguish between counting and binary semaphores. The
value of a counting semaphore can range over an unrestricted domain. The value of a
binary semaphore can range only between 0 and 1. On some systems, binary
semaphores are known as mutex locks, as they are locks that provide mutual
exclusion. We can use binary semaphores to deal with the critical-section problem for
multiple processes

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 5

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

do

waiting(mutex);

Critical section

signal(mutex);

Remainder section
while(TRUE);

Implementation:

The main disadvantage of the semaphore definition given here is that it requires busy
waiting. While a process is in its critical section, any other process that tries to enter its
critical section must loop continuously in the entry code.

This continual looping is clearly a problem in a real multiprogramming system, where a
single CPU is shared among many processes. Busy waiting wastes CPU cycles that
some other process might be able to use productively. This type of semaphore is also
called a spinlock because the process "spins" while waiting for the lock.

Properties of Semaphores

It's simple and always have a non-negative integer value.

Works with many processes.

Can have many different critical sections with different semaphores.

Each critical section has unique access semaphores.

Can permit multiple processes into the critical section at once, if desirable.

o B oo R

Types of Semaphores

Semaphores are mainly of two types in Operating system:
1. Binary Semaphore:

It is a special form of semaphore used for implementing mutual exclusion, hence
it is often called a Mutex. A binary semaphore is initialized to 1 and only takes
the values 0 and 1 during the execution of a program. In Binary Semaphore, the
wait operation works only if the value of semaphore = 1, and the signal operation

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 6

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

succeeds when the semaphore= 0. Binary Semaphores are easier to implement
than counting semaphores.

2. Counting Semaphores:

These are used to implementbounded concurrency. The Counting
semaphores can range over an unrestricted domain. These can be used to
control access to a given resource that consists of a finite number of Instances.
Here the semaphore count is used to indicate the number of available resources.
If the resources are added then the semaphore count automatically gets
incremented and if the resources are removed, the count is decremented.
Counting Semaphore has no mutual exclusion.

Advantages of Semaphores

« With the help of semaphores, there is a flexible management of resources.

« Semaphores are machine-independent and they should be run in the machine-
independent code of the microkernel.

« Semaphores do not allow multiple processes to enter in the critical section.

« They allow more than one thread to access the critical section.

« As semaphores follow the mutual exclusion principle strictly and these are much
more efficient than some other methods of synchronization.

Disadvantages of Semaphores

« One of the biggest limitations is that semaphores may lead to priority inversion;
where low priority processes may access the critical section first and high priority
processes may access the critical section later.

« To avoid deadlocks in the semaphore, the Wait and Signal operations are
required to be executed in the correct order.

« Using semaphores at a large scale is impractical; as their use leads to loss of
modularity and this happens because the wait() and signal() operations prevent
the creation of the structured layout for the system.

« Their use is not enforced but is by convention only.

« With improper use, a process may block indefinitely. Such a situation is
called Deadlock.

Classical Problems of Synchronization:

Semaphore can be used in other synchronization problems besides Mutual Exclusion.

Below are some of the classical problems depicting flaws of process synchronization in
systems where cooperating processes are present.

We will discuss the following three problems:

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 7

Scanne d with CamScanner

1. Bounded Buffer (Producer-Consumer) Problem

2. Dining Philosophers Problem
3. The Readers Writers Problem

Bounded Buffer Problem:

OPERATING SYSTEM (UNIT-2)

Because the buffer pool has a maximum size, this problem is often called the Bounded

buffer problem.

o This problem is generalized in terms of the Producer-Consumer problem,
where a finite buffer pool is used to exchange messages between producer and

consumer processes.

« The solution to this problem is, creating two counting semaphores "full" and
"empty" to keep track of the current number of full and empty buffers

respectively.

» This Producers mainly produce a product and consumers consume the product,

but both can use one of the containers each time.

« The main complexity of this problem is that we must have to maintain the count

for both empty and full containers that are available.

do {

Il produce an item in nextp
wait (empty) ;

wait (mutex) i

Il add nextp to buffer
signal (mutex) ;

signal (full) ;

}while (TRUE) i

Figure :The structure of the producer process.

do {
wait(full) ;
wait (mutex) ;

Il remove an item from buffer to nextc

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS

Page 8

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

signal (mutex) ;

signal (empty) ;

Il consume the item in nextc
}while (TRUE);

Figure : The structure of the consumer process.

Bounded buffer problem, which is also called producer consumer problem, is one of
the classic problems of synchronization. Let's start by understanding the problem here,
before moving on to the solution and program code.

There is a buffer of n slots and each slot is capable of storing one unit of data. There
are two processes running, namely, producer and consumer, which are operating on
the buffer.

Dining philosopher’s problem:

« The dining philosopher's problem involves the allocation of limited resources to a
group of processes in a deadlock-free and starvation-free manner.

o There are five philosophers sitting around a table, in which there are five
chopsticks/forks kept beside them and a bowl of rice in the center, When a
philosopher wants to eat, he uses two chopsticks - one from their left and one
from their right. When a philosopher wants to think, he keeps down both
chopsticks at their original place.

The dining philosophers problem is another classic synchronization problem which is
used to evaluate situations where there is a need of allocating multiple resources to
multiple processes.

Consider there are five philosophers sitting around a circular dining table. The dining
table has five chopsticks and a bowl of rice in the middle as shown in the below figure.

do {

wait (chopstick([i]);

wait (chopstick[(i+) % 5]);
Il eat

signal (chopstick][i]);

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 9

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

signal (chopstick|[(i+]) % 5]);
Il think
jwhile (TRUE);

Figure :The structure of philosopher i.

At any instant, a philosopher is either eating or thinking. When a philosopher wants to
eat, he uses two chopsticks - one from their left and one from their right. When a
philosopher wants to think, he keeps down both chopsticks at their original place.

When a philosopher wants to eat the rice, he will wait for the chopstick at his left and
picks up that chopstick. Then he waits for the right chopstick to be available, and then
picks it too. After eating, he puts both the chopsticks down.

But if all five philosophers are hungry simultaneously, and each of them pickup one
chopstick, then a deadlock situation occurs because they will be waiting for another
chopstick forever

Figure : The situation of the dining philosophers

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 10

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

The possible solutions for this are:

« A philosopher must be allowed to pick up the chopsticks only if both the left and
right chopsticks are available.

« Allow only four philosophers to sit at the table. That way, if all the four
philosophers pick up four chopsticks, there will be one chopstick left on the table.
So, one philosopher can start eating and eventually, two chopsticks will be
available. In this way, deadlocks can be avoided.

The Readers Writers Problem

» In this problem, there are some processes (called readers) that only read the shared
data, and never change it, and there are other processes (called writers) that may
change the data in addition to reading, or instead of reading it.

« There is various type of readers-writers problems, most centered on relative
priorities of readers and writers.

« The main complexity of this problem occurs from allowing more than one reader to
access the data at the same time.Readers writer problem is another example of a
classic synchronization problem.

« There is a shared resource which should be accessed by multiple processes. There
are two types of processes in this context. They are reader and writer.

« Any number of readers can read from the shared resource simultaneously, but only
one writer can write to the shared resource.

« When a writer is writing data to the resource, no other process can access the
resource.

« A writer cannot write to the resource if there are non zero number of readers
accessing the resource at that time.

The semaphore wrt functions as a mutual-exclusion semaphore for the writers. It is also
used by the first or last

do {

wait (wrt) ;

Il writing is performed
signal (wrf) ;

Jwhile (TRUE);

Figure :The structure of a writer process.

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 11

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

do{

wait (mutex) ;
readcount++;

if (readcount ==1)
wait (wrt);

signal (mutex) ;

Il reading is performed
wait (mutex) i
readcount - -;

if (readcount = =0)
signal (wrt) ;

signal (mutex) ;
Jwhile (TRUE) ;

Figure : The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers.

Monitors:

* Another high-level synchronization construct is the monitor type.

e The monitor is one of the ways to achieve Process synchronization.

e The monitor is supported by programming languages to achieve mutual exclusion
between processes.

e For example Java Synchronized methods. Java provides wait() and notify() constructs.

1. It is the collection of condition variables and procedures combined together in a
special kind of module or a package.

2. The processes running outside the monitor can’t access the internal variable of the
monitor but can call procedures of the monitor.

3. Only one process at a time can execute code inside monitors.

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 12

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

Syntax:

Monitor Demo //Name of Monitor

variables;
condition variables;

procedure p1 {....}
prodecure p2 {....}

Syntax of Monitor

Condition Variables:
Two different operations are performed on the condition variables of the monitor.
Wait.

signal.
condition x, y;
Wait operation

x.wait() : Process performing wait operation on any condition variable are suspended.
The suspended processes are placed in block queue of that condition variable.

Note: Each condition variable has its unique block queue.

Signal operation
x.signal(): When a process performs signal operation on condition variable, one of the
blocked processes is given chance.

If (x block queue empty)

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 13

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

entry queue

shared data

v

operations

initialization
code

Figure: Schematic view of a monitor

entry queue

shared data

queues associated with
X, y conditions

operations

initialization
code

Figure: Monitor with condition variable

Characteristics of Monitors.
* Inside the monitors, we can only execute one process at a time.
e Monitors are the group of procedures, and condition variables that are merged
together in a special type of module.

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 14

Scanne d with CamScanner

OPERATING SYSTEM (UNIT-2)

e |f the process is running outside the monitor, then it cannot access the monitor's
internal variable. But a process can call the procedures of the monitor.

e Monitors offer high-level of synchronization

e Monitors were derived to simplify the complexity of synchronization problems.

e There is only one process that can be active at a time inside the monitor.

Components of Monitor
There are four main components of the monitor:

e Initialization
e Private data
e Monitor procedure

e Monitor entry queue
Initialization: - Initialization comprises the code, and when the monitors are created,
we use this code exactly once.
Private Data: — Private data is another component of the monitor. It comprises all the
private data, and the private data contains private procedures that can only be used
within the monitor. So, outside the monitor, private data is not visible.
Monitor Procedure: — Monitors Procedures are those procedures that can be called
from outside the monitor.
Monitor Entry Queue: — Monitor entry queue is another essential component of the
monitor that includes all the threads, which are called procedures.

Advantages of Monitor:
Monitors have the advantage of making parallel programming easier and less error
prone than using techniques such as semaphore.

Disadvantages of Monitor:

e Monitors have to be implemented as part of the programming language.
The compiler must generate code for them. This gives the compiler the additional
burden of having to know what operating system facilities are available to control
access to critical sections in concurrent processes. Some languages that do support
monitors are Java, C#, Visual Basic, Ada .

MASTER OF COMPUTER APPLICATION (MCA) - KMM IPS Page 15

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

CHAPTER -7
DEADLOCKS
TOPICS:

Deadlock Characterization
Deadlock Handling
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Deadlock Recovery

Deadlock definition:

In a multiprogramming environment, several processes may complete for a finite
number of resources. A process requests resources; if the resources are not available
at that time, the process enters a wait state. Waiting processes may never again
change state, because the resources they have requested are held by other waiting pro
-cesses. This situation is called a deadlock.

A deadlock is a situation in which two computer programs sharing the same resource
are effectively preventing each other from accessing the resource, resulting in both
programs ceasing to function.

A deadlock happens in operating system when two or more processes need some
resource to complete their execution that is held by the other process.

/ Process 1

/ Resource 1 / Resource 2

Deadlock in Operating System

e In the above diagram, the process 1 has resource 1 and needs to acquire
resource 2. Similarly process 2 has resource 2 and needs to acquire resource 1.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 1

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

e Process 1 and process 2 are in deadlock as each of them needs the other’s
resource to complete their execution but neither of them is willing to relinquish
their resources.

Deadlock Characterization:

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in the
system.

The four conditions are given as follows -

s Mutual Exclusion

There should be a resource that can only be held by one process at a time. In the
diagram below, there is a single instance of Resource 1 and it is held by Process
1 only.

Allocated
Resource 1

+ Hold and Wait

A process can hold multiple resources and still request more resources from
other processes which are holding them. In the diagram given below, Process 2
holds Resource 2 and Resource 3 and is requesting the Resource 1 which is
held by Process 1.

Allocated Renciice o
e
Vi ™ 4 /
\ Allocated Request
Pr 1 /- Resource 1 Process 2
- \
\“// — Alloca!:u\\‘ Resource 3

« No Preemption

A resource cannot be preempted from a process by force. A process can only
release a resource voluntarily. In the diagram below, Process 2 cannot preempt

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 2

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Resource 1 from Process 1. It will only be released when Process 1 relinquishes
it voluntarily after its execution is complete.

Allocated
@-

o Circular Wait

A process is waiting for the resource held by the second process, which is
waiting for the resource held by the third process and so on, till the last process
is waiting for a resource held by the first process. This forms a circular chain. For
example: Process 1 is allocated Resource2 and it is requesting Resource 1.
Similarly, Process 2 is allocated Resource 1 and it is requesting Resource 2. This
forms a circular wait loop.

Allocated
Resource 2

Request
Resource 1 [¢——— Process 2

Request Allocated

Resource 1 Resource 2

Allocated
Process 2

Resource - Allocation Graph :

Deadlocks can be described more precisely in terms of a directed graphs called a
system Resource Allocation Graph.

« This Graph acts as the pictorial representation of the state of the system.
« The Resource Allocation graph mainly consists of a set of vertices V and a set

of Edges E.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 3

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

« This graph mainly contains all the information related to the processes that are
holding some resources and also contains the information of the processes that
are waiting for some more resources in the system.

« Also, this graph contains all the information that is related to all the instances of
the resources which means the information about available resources and the
resources which are being used by the process

« In this graph, the circle is used to represent the process, and the rectangle is
used to represent the resource.

Components of Resource Allocation Graph
Given below are the components of RAG:

1. Vertices
2. Edges

1.Vertices
There is two kinds of vertices used in the resource allocation graph and these are:

« Process Vertices
« Resource Vertices

Process Vertices

These vertices are used in order to represent process vertices. The circle is used in
order to draw the process vertices and the name of the process is mentioned inside the
circle.

Resource Vertices

These vertices are used in order to represent resource vertices. The rectangle is used

in order to draw the resource vertices and we use dots inside the circle to mention the
number of instances of that resource.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 4

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Types of Vertices

Process Resource
Vertices Vertices

Registers

In the system, there may exist a number of instances and according to them, there are
two types of resource vertices and these are single instances and multiple instances.

Single Instance

In a single instance resource type, there is a single dot inside the box. The single dot
mainly indicates that there is one instance of the resource.

Multiple Instance

In multiple instance resource types, there are multiple dots inside the box, and these
Multiple dots indicate that there are multiple instances of the resources.

2. Edges

In the Resource Allocation Graph, Edges are further categorized into two:

1. Assign Edges

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 5

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Assign Edges are mainly used to represent the allocation of resources to the process.
We can draw assign edges with the help of an arrow in which mainly the arrowhead
points to the process, and the process mainly tail points to the instance of the resource.

@ 1

In the above Figure, the resource is assigned to the process
2. Request Edges
Request Edge is mainly used to signify the waiting state of the process. Likewise in

assigned edge, an arrow is used to draw an arrow edge. But Here the arrowhead points
to the instance of a resource, and the tail of the process points to the process.

Q

In the above figure, the process is requesting a resource

Single Instance RAG Example

Suppose there are Four Processes P1, P2, P3, P4, and two resources R1 and R2,
where P1 is holding R1 and P2 is holding R2, P3 is waiting for R1 and R2 while P4 is
waiting for resource R1.

R2is
assigned
to "
process P3is
P2 waiting
for R1
and R2
R1is
assigned
to
process
P1 -
R1 R2

o P4 is

waiting
for R1

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 6

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

In the above example, there is no circular dependency so there are no chances for the
occurrence of deadlock.

Thus having cycled in single-instance resource type must be the sufficient condition for
deadlock.

Multiple Instance RAG Example

Suppose there are four processes P1, P2, P3, P4 and there are two instances of
resource R1 and two instances of resource R2:

8
o«

AV

R2

Multiple Instance Resource Allocation graph with a cycle but no deadlock

One instance of R2 is assigned to process P1 and another instance of R2 is assigned to
process P4, Process P1 is waiting for resource R1.

One instance of R1 is assigned to Process P2 while another instance of R2 is assigned
to process P3, Process P3 is waiting for resource R2.

« For example:
Resource -allocation graph shown in below figure the following situation.

< The set P,R and E:
e P={P1,P2,P3}
¢ R ={R1,R2,R3,R4)
e E={P1>R1,P2->R3,R1 >P2, R2 5P2,R2>P1, R3>P3}
% Resource instances:
One instance of resource type R1
Two instance of resource type R2
One instance of resource type R3
Three instance of resource type R4

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 7

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

% Process state:
e Process P1 is holding an instance of resource type R2, and is waiting for
an instance of resource type R1.
e Process P2 is holding an instance of R1 and R2, and is waiting for an
instance of resource type R3.
e Process P3 is holding an instance of R3.

A, R
- L
F 4
@
L] -
-
R, -
R,

Figure - Resource allocation graph

« |If a resource-allocation graph contains no cycles, then the system is not
deadlocked. (When looking for cycles, remember that these
are directed graphs.) See the example in Figure above.

« If a resource-allocation graph does contain cycles AND each resource category
contains only a single instance, then a deadlock exists.

« If a resource category contains more than one instance, then the presence of a
cycle in the resource-allocation graph indicates the possibility of a deadlock, but
does not guarantee one.

« Consider, for example, Figures below:

» The two minimal cycle exist in the system

P1-> R1>P2-> R3>P3->R2>P1

P2R3 > P3 >R2-> P2

e

5

Processes P1,P2,and P3 are deadlocked.
Process P2 is waiting for the resource R3,which is held by process P3.

e

'

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 8

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

o

Process P3, on the other hand, is waiting for either process P1 or Process P2 to
release resource R2.

Process P1 is waiting for process P2 to release resource R1.

The resource —allocation graph in figure also have a cycle.
P1<>R1=2P3<5R2-5P1

s

o

53

5

o

5

hY
Jiene

Y

Figure - Resource allocation graph with a deadlock.

Methods for Handling Deadlocks:

» Generally speaking there are three ways of handling deadlocks:
o Deadlock prevention or avoidance - Do not allow the system to get into a
deadlocked state.

» Deadlock detection and recovery - Abort a process or preempt some resources
when deadlocks are detected.

« Ignore the problem all together - If deadlocks only occur once a year or so, it may
be better to simply let them happen and reboot as necessary than to the constant
overhead and system performance associated with deadlock prevention or
detection. This is the approach that both Windows and UNIX take.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 9

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

o

Figure - Resource allocation graph with a cycle but no deadlock

« In order to avoid deadlocks, the system must have additional information about
all processes. In particular, the system must know what resources a process will
or may request in the future.

» Deadlock detection is fairly straight forward, but deadlock recovery requires
either aborting processes.

« |If deadlocks are neither prevented nor detected, then when a deadlock occurs
the system will gradually slow down, as more and more processes become stuck
waiting for resources currently held by the deadlock and by other waiting
processes.

Deadlock Prevention

« Deadlocks can be prevented by preventing at least one of the four required
conditions:

Mutual Exclusion
« Shared resources such as read-only files do not lead to deadlocks.
« Unfortunately some resources, such as printers and tape drives, require
exclusive access by a single process.

Hold and Wait

» To prevent this condition processes must be prevented from holding one or more
resources while simultaneously waiting for one or more others.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 10

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

« There are several possibilities for this:

» Require that all processes request all resources at one time. This can be
wasteful of system resources if a process needs one resource early in its
execution and doesn't need some other resource until much later.

» Require that processes holding resources must release them before requesting
new resources, and then re-acquire the released resources along with the new
ones in a single new request. This can be a problem if a process has partially
completed an operation using a resource and then fails to get it re-allocated after
releasing it.

» Either of the methods described above can lead to starvation if a process
requires one or more popular resources.

No Preemption

« Preemption of process resource allocations can prevent this condition of
deadlocks, when it is possible.

» One approach is that if a process is forced to wait when requesting a new
resource, then all other resources previously held by this process are implicitly
released, (preempted), forcing this process to re-acquire the old resources
along with the new resources in a single request, similar to the previous
discussion.

» Another approach is that when a resource is requested and not available, then
the system looks to see what other processes currently have those
resources and are them selves blocked waiting for some other resource. If such
a process is found, then some of their resources may get preempted and added
to the list of resources for which the process is waiting.

» Either of these approaches may be applicable for resources whose states are
easily saved and restored, such as registers and memory, but are generally not
applicable to other devices such as printers and tape drives.

Circular Wait

« One way to avoid circular wait is to number all resources, and to require that
processes request resources only in strictly increasing (or decreasing) order.

« In other words, in order to request resource Rj, a process must first release all Ri
such thati >=.

« One big challenge in this scheme is determining the relative ordering of the
different resources

Deadlock Avoidance:

« The general idea behind deadlock avoidance is to prevent deadlocks from ever
happening, by preventing at least one of the aforementioned conditions.

« This requires more information about each process, AND tends to lead to low
device utilization.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 11

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

In some algorithms the scheduler only needs to know the maximum number of
each resource that a process might potentially use. In more complex algorithms
the scheduler can also take advantage of the schedule of exactly what resources
may be needed in what order.

When a scheduler sees that starting a process or granting resource requests
may lead to future deadlocks, then that process is just not started or the request
is not granted.

A resource allocation state is defined by the number of available and allocated
resources, and the maximum requirements of all processes in the system.

Safe State

A state is safeif the system can allocate all resources requested by all
processes (up to their stated maximums) without entering a deadlock state.
More formally, a state is safe if there exists a safe sequence of processes { PO,
P1, P2, ..., PN } such that all of the resource requests for Pi can be granted using
the resources currently allocated to Pi and all processes Pj where j < i. (l.e. if all
the processes prior to Pi finish and free up their resources, then Pi will be able to
finish also, using the resources that they have freed up.)

If a safe sequence does not exist, then the system is in an unsafe state,
which MAY lead to deadlock. (All safe states are deadlock free, but not all
unsafe states lead to deadlocks.)

unsafe

deadlock

safe

Figure: Safe, unsafe, and deadlocked state spaces.

For example, consider a system with 12 tape drives, allocated as follows. Is this
a safe state? What is the safe sequence?

" Maximum Needs Current Allocation

PO |10 5

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 12

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)
P1 |4 2
P2 9 2
« What happens to the above table if process P2 requests and is granted one more
tape drive?

« Key to the safe state approach is that when a request is made for resources, the
request is granted only if the resulting allocation state is a safe one.

Resource-Allocation Graph Algorithm

« |If resource categories have only single instances of their resources, then
deadlock states can be detected by cycles in the resource-allocation graphs.

« In this case, unsafe states can be recognized and avoided by augmenting the
resource-allocation graph with claim edges, noted by dashed lines, which point
from a process to a resource that it may request in the future.

« In order for this technique to work, all claim edges must be added to the graph for
any particular process before that process is allowed to request any resources.
(Alternatively, processes may only make requests for resources for which they
have already established claim edges, and claim edges cannot be added to any
process that is currently holding resources.)

« When a process makes a request, the claim edge Pi->Rj is converted to a
request edge. Similarly when a resource is released, the assignment reverts
back to a claim edge.

« This approach works by denying requests that would produce cycles in the
resource-allocation graph, taking claim edges into effect.

« Consider for example what happens when process P2 requests resource R2:

R,

Figure : Resource allocation graph for deadlock avoidance

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 13

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

« The resulting resource-allocation graph would have a cycle in it, and so the
request cannot be granted.

R,

\ e

Figure - An unsafe state in a resource allocation graph

Banker's Algorithm
+ The resource-allocation-graph algorithm is not applicable to a resource
allocation system with multiple instances of each resource type. The
deadlock avoidance algorithm that we describe next is applicable to such
a system but is less efficient than the resource-allocation graph scheme.
This algorithm is commonly known as the banker's algorithm.

« The banker's algorithm relies on several key data structures: (where ‘n’ is
the number of processes and ‘m’ is the number of resource categories.)
o Available: [m] indicates how many resources are currently available of
each type.
o Max: [n][m] indicates the maximum demand of each process of each
resource.
o Allocation: [n][m] indicates the number of each resource category
allocated to each process.
o Need: [n][m] indicates the remaining resources needed of each type for
each process. (Note that Need[i][j]=Max[i][j] - Allocation[i][] for all
i, j.)
» For simplification of discussions, we make the following notations / observations:
o One row of the Need vector, Need[i], can be treated as a vector
corresponding to the needs of process i, and similarly for Allocation and
Max.
o Avector X is considered to be <=a vector Yif X[i]<=Y[i] foralli.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 14

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Safety Algorithm

o In order to apply the Banker's algorithm, we first need an algorithm for
determining whether or not a particular state is safe.

« This algorithm determines if the current state of a system is safe, according to
the following steps:

We can now present the algorithm for finding out whether or not a system
is in a safe state. This algorithm can be described as follows:

1. Let Work and Finish be vectors of length m and n respectively. Initialize
Work := Available and Finish[i] =false fori= 1, 2, ... ,n.

2. Find an i such that both

a. Finish[i] == false

b. Need i < or = Work

If no such i exists, go to step 4.

3.Work :=Work + Allocation;
Finish[i] = true
Go to step 2.
4. If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m x n 2 operations to decide
whether a state is safe.

7.5.3.2 Resource-Request Algorithm

We nm-v describe the algorithm which determines if requests can be
safely granted.

Let Request) be the request vector for process P, If Request i [j] == k,then
process Pi wants k instances of resource type Rj. When a request for
resources is made by process Pi, the following actions are taken:

1. If Request i< or = Need i, go to step 2. Otherwise/ raise an error condition,
since the process has exceeded its maximum claim.

2. If Request i < or = Available, go to step 3. Otherwise, Pi must wait, since
the resources are not available.

3. Have the system pretend to have allocated the requested resources to
process Pi by modifying the state as follows:

Available := Available — Request i;

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 15

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Allocation i = Allocation i + Request i;
Need i =Need i — Request i;

4. If the resulting resource-allocation state is safe, the transaction is
completed, and process Pi is allocated its resources. However, if the new
state is unsafe, then Pi must wait for Request i, and the old resource-
allocation state is restored.

An lllustrative Example:

e Consider a system with five processes PO through P4 and three resource types
A.B,C. Resource type A has 10 instance, resource type B has 5 instances, and
resource type C has 7 instances. Suppose that, at a time T0, the following
snapshot of the system has been taken:

éllocz:zliurz_ Max Available Need
ABC ABC ABC ABC

P 010 753 332 743
P 200 322 122
P> 302 902 600
Py 211 222 011
Py 002 433 431

« The consider of the matrix Need is defined to be Max-Allocation and is follow:

« We claim that the system is currently in a safe state. Indeed, the sequence
<P1, P3, P4, P2, PO> satisfies the safety criteria.

« Suppose now that process P1 requests one additional instance of resource type
A and two instances of resource type C, so Request1=(1,0,2). To decide
whether this request can be immediately granted, we first check that Request1 <
or = Available (that is, that (1,0,2) < or = (3,3,2)), which is true. We then pretend.
that this request has been fulfilled, and we arrive at the following new state:

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 16

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Allocation Need Available
ABC ABC ABC

TR 1 743 230
) 302 020
B 302 600
P, 211 011
P, 002 131

» We must determine whether this new system state is safe.

« To do so, we execute our safety algorithm and find that the sequence <P1, P3,
P4, PO, P2> satisfies our safety requirements.

+ Hence, we can immediately grant the request of process P1.

Deadlock Detection

« If a system does not employ either a deadlock-prevention or a deadlock
avoidance algorithm then a deadlock situation may occur. In this environment,
the system must provide:

« An algorithm that examines the state of the system to determine whether a
deadlock has occurred

« An algorithm to recover from the deadlock

» In the following discussion, we elaborate on these two requirements as they
pertain to systems with only a single instance of each resource type, as well
as to systems with several instances of each resource type.

« Single Instance of Each Resource Type:

« If each resource category has a single instance, then we can define a deadlock
detection algorithm that uses a variation of the resource-allocation graph known
as a wait-for graph.

« A wait-for graph can be constructed from a resource-allocation graph by
eliminating the resources and collapsing the associated edges, as shown in the
figure below.

« An edge from Pi to Pi in a wait-for graph implies that process Pi is waiting for
process Pi to release a resource that Pi needs.

« An edge Pi > Pj exists in a wait-for graph if and only if the corresponding
resource allocation graph contains two edges Pi= Rqg and Rq—> Pj for some
resource Rq.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 17

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

For example, in Figure we present a resource-allocation graph and the
corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph
contains a cycle.

To detect deadlocks, the system needs to maintain the wait-for graph and
periodically to invoke an algorithm that searches for a cycle in the graph.

An algorithm to detect a cycle in a graph requires an order of n2 operations,
where n is the number of vertices in the graph.

Figure - (a) Resource allocation graph. (b) Corresponding wait-for graph

Several Instances of a Resource Type:

»
0.0

*

e

o

*

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker's algorithm.

Available: A vector of length m indicates the number of available resources of
each type.

Allocation: An n x m matrix defines the number of resources of each type
currently allocated to each process.

Request: An n x m matrix indicates the current request of each process. If
Request[i,j] = k, then process Pi is requesting k more instances of resource type
Rj .

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 18

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

1. Let Work and Finish be vectors of length m and n, respectively. Initialize
Work:=Available. For i=1,2,...,n if Allocation i =/ 0, then Finish[i] := false
otherwise, Finishli] :=true.

2. Find an index i such that both
a. Finishl[i] = false.

b. Request i < or = Work.

If no such i exists, go to step 4.

3. Work := Work + Allocation;
Finish[i] := true
Go to step 2.

4. If Finish[i] = false, for some i, 1< or = i < or =n, then the system is in a
deadlocked state. Moreover, if Finish[i] = false, then process Pi is deadlocked.
This algorithm requires an order of m x n2 operations to detect whether the
system is in a deadlocked state.

To illustrate this algorithm, we consider a system with five processes Po
through P4 and three resource types A, B, and C.

Resource type A has seven instances, resource type B has two instances, and
resource type C has six instances.

Suppose that, at time To, we have the following resource-allocation state:

* *
-4 R od Rodd

*
()

*
Lod

Allocation ~ Request Available
ABC ABC ABC

Py 010 000 000
Py 200 202
P, 303 000
P, 211 100
Py 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute our
algorithm, we will find that the sequence < PO, P2, P3, P1, P4> results in Finish[i] = true
for all i.

Suppose now that process P2 makes one additional request for an instance of
type C. The Request matrix is modified as follows:

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 19

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

Allocation ~ Request Available
ABC ABC ABC

Py 010 000 000
Py 200 202
P, 303 001
P, 211 100
Py 002 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process PO, the number of available resources is not sufficient to
fulfill the requests of the other processes. Thus, a deadlock exists, consisting of
processes P1, P2, P3, and P4.

Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two factors:

1. How often is a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently.

Resources allocated to deadlocked processes will be idle until the deadlock can be
broken. In addition, the number of processes involved in the deadlock cycle may grow.

Recovery From Deadlock

» There are three basic approaches to recovery from deadlock:
1. Inform the system operator, and allow him/her to take manual intervention.
2. Terminate one or more processes involved in the deadlock
3. Preempt resources.

Process Termination

« Two basic approaches, both of which recover resources allocated to terminated
processes:
o Terminate all processes involved in the deadlock. This definitely solves
the deadlock, but at the expense of terminating more processes than
would be absolutely necessary.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 20

Scanne d with CamScanner

OPERATING SYSETM (UNIT-2)

o Terminate processes one by one until the deadlock is broken. This is more
conservative, but requires doing deadlock detection after each step.
Abort all deadlocked processes. This method clearly will break the deadlock
cycle, but at great expense; the deadlocked processes may have computed for a
long time, and the results of these partial computations must be discarded and
probably will have to be recomputed later.
Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since, after each process is aborted, a
deadlock-detection algorithm must be invoked to determine wl1f'ther any
processes are still deadlocked
In the latter case there are many factors that can go into deciding which
processes to terminate next:
1. Process priorities.
2. How long the process has been running, and how close it is to finishing.
3. How many and what type of resources is the process has used (for
example, whether the resources are simple to preempt)
4. How many more resources the process needs in order to complete.
5. How many processes will need to be terminated
6. Whether the process is interactive or batch.

Resource Preemption

When preempting resources to relieve deadlock, there are three important issues
to be addressed:

Selecting a victim - Deciding which resources to preempt from which processes
involves many of the same decision criteria outlined above.

Rollback - Ideally one would like to roll back a preempted process to a safe state
prior to the point at which that resource was originally allocated to the process.
Unfortunately it can be difficult or impossible to determine what such a safe state
is, and so the only safe rollback is to roll back all the way back to the beginning.
(i.e. abort the process and make it start over.)

Starvation - How do you guarantee that a process won't starve because its
resources are constantly being preempted? One option would be to use a priority
system, and increase the priority of a process every time its resources get
preempted. Eventually it should get a high enough priority that it won't get
preempted any more.

MASTER OF COMPUTER APPLICATION (MCA)- KMM IPS. Page 21

Scanne d with CamScanner

