UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q1. What is Procedural Oriented Approach of Programming and drawbacks.

Early programming languages developed in 50s and 60s are recognized as procedural (or
procedure oriented) languages.

A computer program describes procedure of performing certain task by writing a series
of instructions in a logical order. Logic of a more complex program is broken down into
smaller but independent and reusable blocks of statements called functions.

Every function is written in such a way that it can interface with other functions in the
program. Data belonging to a function can be easily shared with other in the form of
arguments, and called function can return its result back to calling function.

Prominent problems related to procedural approach are as follows -
¢ Itstop-down approach makes the program difficult to maintain.

¢ ltuses alot of global data items, which is undesired. Too many global data items
would increase memory overhead.

e |t gives more importance to process and doesn't consider data of same
importance and takes it for granted, thereby it moves freely through the program.

e Movement of data across functions is unrestricted. In real-life scenario where
there is unambiguous association of a function with data it is expected to
process.

Q2. Explain about Object Oriented Programming .

OOPS (Object-Oriented Programming) concepts are fundamental principles for
designing software using objects, focusing on real-world entities, with the core
being Class, Object, Inheritance, Polymorphism, Abstraction,

and Encapsulation (the four pillars). They help create modular, reusable, and
maintainable code by binding data and behavior together, hiding complexity, and
enabling code reuse through relationships like Association, Aggregation,
and Composition.

Key Features of OOP in Python:
e Organizes code into classes and objects
e Supports encapsulation to group data and methods together
e Enables inheritance for reusability and hierarchy
e Allows polymorphism for flexible method implementation

o Improves modularity, scalability, and maintainability

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Polymorphism Inheritance

Principles

Abstraction Of Encapsulation

oopP

Class & Object

A class is an user-defined prototype for an object that defines a set of attributes that
characterize any object of the class. The attributes are data members (class variables
and instance variables) and methods, accessed via dot notation.

An object refers to an instance of a certain class. For example, an object named obj that
belongs to a class Circleis an instance of that class. A unique instance of a data
structure that is defined by its class. An object comprises both data members (class
variables and instance variables) and methods.

Encapsulation

Data members of class are available for processing to functions defined within the class
only. Functions of class on the other hand are accessible from outside class context. So
object data is hidden from environment that is external to class. Class function (also
called method) encapsulates object data so that unwarranted access to it is prevented.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Data Abstraction:
Data abstraction is one of the most essential and important features of object-oriented

programming. Data abstraction refers to providing only essential information about the
data to the outside world, hiding the background details or implementation. Consider a
real-life example of a man driving a car. The man only knows that pressing the
accelerators will increase the speed of the car or applying brakes will stop the car, but he
does not know about how on pressing the accelerator the speed is increasing, he does
not know about the inner mechanism of the car or the implementation of the accelerator,
brakes, etc in the car. This is what abstraction is.

Inheritance

A software modelling approach of OOP enables extending capability of an existing class
to build new class instead of building from scratch. In OOP terminology, existing class is
called base or parent class, while new class is called child or sub class.

Child class inherits data definitions and methods from parent class. This facilitates reuse
of features already available. Child class can add few more definitions or redefine a base
class function.

Types of Inheritance:

Parent Class Parent Class Parent Class Parent Class
Child Class Child Class derived class 1

l

Single inheritance Multiple inheritance)
derived class 2
Multilevel inheritance
Parent Class Parent Class

| :

. . . B Cc
Child Class 1 Child Class 2 Child Class 3 derived class derived class

Hierarchical inheritance \/

D

derived class

Hybrid Class

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Single Inheritance

When a class inherits another class, it is known as a single inheritance. In the example
given below, Dog class inherits the Animal class, so there is the single inheritance.

Class A Base Class/ Parent Class/ Super Class
A
Inherits
Class B Child Class/ Sub Class/ Derived Class

Single Inheritance
Whroint Tech

Multilevel Inheritance

When there is a chain of inheritance, it is known as multilevel inheritance. As you
can see in the example given below, BabyDog class inherits the Dog class which
again inherits the Animal class, so there is a multilevel inheritance.

To read more: Multilevel Inheritance in Java

Class A Base Class
A

Class B Intermediatory Class
A

Class C Derived Class

Multilevel Inheritance
WWroint Tech

https://www.tpointtech.com/multilevel-inheritance-in-java

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Hierarchical Inheritance

When two or more classes inherits a single class, it is known as hierarchical inheritance.
In the example given below, Dog and Cat classes inherits the Animal class, so there is
hierarchical inheritance.

Class A Super Class
=
Inherits _— - Inherits Inherits
Class B Class C Class D

Sub Classes

Hierarchical Inheritance

Multiple inheritance is a feature in object-oriented programming (OOP) that allows

a class to inherit attributes and methods from more than one parent class. This
allows a derived (child) class to combine the features and behaviors of multiple base
(parent) classes.

Key Concepts
» Derived Class (Child Class): The class that inherits from other classes.

« Base Classes (Parent Classes): The classes from which the derived class
inherits.

o Code Reusability: The primary advantage, allowing developers to use existing
code and functionalities in a new class without rewriting them.

« Flexibility: Enables modeling of complex, real-world relationships where an

entity might have characteristics from multiple distinct categories (e.g.,
an HourlyUnionWorker class inheriting from

both HourlyWorker and UnionMember classes).

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Basel Base2

Derived
Features of Basel+
Base2? + Derived

Hybrid Inhertiance:

Hybrid inheritance combines multiple inheritance types (like single, multiple, multilevel,
hierarchical) in a single class hierarchy to model complex real-world relationships,
allowing classes to inherit from various parents in different styles for enhanced code
reuse, but it can introduce complexity, especially the "diamond problem" (ambiguity). It's
a blend of inheritance styles, such as a class inheriting from two classes that themselves
use multilevel inheritance.

Hybrid Inheritance

Base
Class

Derived Derived

Class A Class B

Derived
Class C

Polymorphism:

The word polymorphism means having many forms. In simple words, we
can define polymorphism as the ability of a message to be displayed in
more than one form. For example, A person at the same time can have
different characteristics. Like a man at the same time is a father, a
husband, an employee. So the same person posses different behavior in
different situations. This is called polymorphism

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Type of Polymorphism

! !

Compile Time Run Time
Function Operator Virtual
overloading overloading function

Features of polymorphism:

e Multiple Behaviors: The same method can behave differently depending on the
object that calls this method.

e Method Overriding: A child class can redefine a method of its parent class.

¢ Method Overloading: We can define multiple methods with the same name but
different parameters.

¢ Runtime Decision: At runtime, Java determines which method to call depending
on the object's actual class.

Dynamic Binding:

In dynamic binding, the code to be executed in response to the function call is
decided at runtime. Dynamic binding means that the code associated with a given
procedure call is not known until the time of the call at run time. Dynamic Method
Binding One of the main advantages of inheritance is that some derived class D has
all the members of its base class B. Once D is not hiding any of the public members
of B, then an object of D can represent B in any context where a B could be used.
This feature is known as subtype polymorphism.

Message Passing:

It is a form of communication used in object-oriented programming as well as
parallel programming. Objects communicate with one another by sending and
receiving information to each other. A message for an object is a request for
execution of a procedure and therefore will invoke a function in the receiving object
that generates the desired results. Message passing involves specifying the name
of the object, the name of the function, and the information to be sent.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q3. Explain about creation of Classes and Objects in Python.

In Python, a class is a user defined entity (data types) that defines the type of data
an object can contain and the actions it can perform. It is used as a template for
creating objects. For instance, if we want to define a class for Smartphone in a
Python program, we can use the type of data like RAM, ROM, screen-size and
actions like call and message.

Creating Classes in Python

The class keyword is used to create a new class in Python. The name of the class
immediately follows the keyword class followed by a colon as shown below —

Syntax:

class ClassName:
attributes;
class methods

Example:
class Employee:

'‘Common base class for all employees'
empCount=0
def __init_ (self, name, salary):

self.name = name

self.salary = salary

Employee.empCount += 1
def displayCount(self):

print "Total Employee %d" % Employee.empCount
def displayEmployee(self):

print "Name : ", self.name, ", Salary: ", self.salary

Object:

An object is refered to as an instance of a given Python class. Each object has its
own attributes and methods, which are defined by its class.When a class is created,
it only describes the structure of obejcts. The memory is allocated when an object

is instantiated from a class.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Creating Objects of Classes in Python

To create instances of a class, you call the class using class name and pass in whatever
arguments its __init__ method accepts.

This would create first object of Employee class
emp1 = Employee("Zara", 2000)

This would create second object of Employee class
emp2 = Employee("Manni", 5000)

Accessing Attributes of Objects in Python

You access the object's attributes using the dot operator with object. Class variable
would be accessed using class name as follows -

empl.displayEmployee()

emp2.displayEmployee()

print ("Total Employee %d" % Employee.empCount)
Garbage Collection(Destroying Objects) in Python

Python deletes unwanted objects (built-in types or class instances) automatically
to free the memory space. The process by which Python periodically reclaims blocks

of memory that no longer are in use is termed Garbage Collection.

Python's garbage collector runs during program execution and is triggered when
an object's reference count reaches zero. An object's reference count changes as

the number of aliases that point to it changes.

class Account:
def __init__ (self, owner, balance):
self.owner = owner
self. balance = balance # Private attribute

def deposit(self, amount):
self._ _balance += amount

def withdraw(self, amount):
if amount <= self.__balance:
self._ balance -= amount
else:
print("Insufficient funds")

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

def get_balance(self):
return self. __balance

acct =Account("John Doe", 1000)
acct.deposit(500)
print(acct.get_balance()) # Output: 1500

Q4. Discuss about Instance attributes and Class Attributes

The properties or variables defined inside a class are called as Attributes. An attribute
provides information about the type of data a class contains. There are two types of
attributes in Python namely instance attribute and class attribute.

The instance attribute is defined within the constructor of a Python class and is unique
to eachinstance of the class. And, a class attribute is declared and initialized outside the
constructor of the class.

Class Attributes (Variables)

Class attributes are those variables that belong to a class and whose value is shared
among all the instances of that class. A class attribute remains the same for every
instance of the class.

Class attributes are defined in the class but outside any method. They cannot be
initialized inside __init__() constructor. They can be accessed by the name of the classin
addition to the object. In other words, a class attribute is available to the class as well as
its object. The object name followed by dot notation (.) is used to access class attributes.

Ex:-
class Employee:
name = "Bhavesh Aggarwal"
age ="30"
instance of the class
emp = Employee()
accessing class attributes
print("Name of the Employee:", emp.name)

print("Age of the Employee:", emp.age)

UNIT-V MCA 102 A Programming in Python

KMMIPS:TIRUPATI

They are used to define those properties of a class that should have the same value for

every object of that class.Class attributes can be used to set default values for objects.

Instance Attributes

As stated earlier, an instance attribute in Python is a variable that is specific to an
individual object of a class. It is defined inside the __init__ () method.

The first parameter of this method is self and using this parameter the instance attributes

are defined.
class Student:
def __init__ (self, name, grade):
self._ _name =name self.name,self.grade-----
self.__grade = grade

print ("Name:", self.__name, ", Grade:", self.__grade)

Creating instances
student1 = Student("Ram", "B")
student2 = Student("Shyam", "C")

Instance Attributes Vs Class Attributes

- instance attributes

SNo. | Instance Attribute

Class Attribute

1 It is defined directly inside the __init_ ()
function.

It is defined inside the class but outside
the __init__() function.

2 Instance attribute is accessed using the
object name followed by dot notation.

Class attributes can be accessed by
both class nhame and object name.

3 The value of this attribute cannot be shared
among other objects.

Its value is shared among other objects
of the class.

4 Changes made to the instance attribute affect
only the object within which it is defined.

Changes made to the class attribute
affect all the objects of the given class.

the self parameter is areference to the current instance of a class and is used to

access its attributes and methods. It must be the first parameter of any instance method,

including the special __init__ constructor.

https://www.tutorialspoint.com/python/python_classes_objects.htm
https://www.tutorialspoint.com/python/python_classes_objects.htm

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q5 Explain about Constructors and Destructors in Python.

Constructor in Python

e Aconstructoris a special method used to initialize an object’s attributes when it
is created.

¢ InPython, the constructor method is __init_ ().
e Itis automatically called when a new object is created.

e Commonly used to set initial values for object properties.
Example:

class Car:
def __init__(self, make, model, year): -----> Constructor
self.make = make
self.model = model
selfyear =year

Destructors

A destructor is a special method called when an object is destroyed. It is used to clean
up resources. In Python, the __del__ method acts as a destructor.

¢ Adestructoris a special method used to clean up resources before an object is
destroyed.

¢ InPython, the destructor methodis _ del_ ().

o Itis called when the object is about to be destroyed (usually when reference
count becomes zero).

e Python has automatic garbage collection, so destructors are less commonly
used than in languages like C++.
Example:

class Car:
def __init__(self, make, model, year):
self.make = make
self.model = model
selfyear =year
def __del__(self): ----> Destructor

print(f"Car {self.make}{self.model} is being destroyed")

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q6. Discuss about Inheritance in Python and how it is implemented.

Inheritance is one of the most important features of object-oriented programming
languages like Python. It is used to inherit the properties and behaviours of one class
to another. The class that inherits another class is called a child class and the class

that gets inherited is called a base class or parent class.
Creating a Parent Class

The class whose attributes and methods are inherited is called as parent class. It is
defined just like other classes i.e. using the class keyword.

Syntax
The syntax for creating a parent class is shown below -
class ParentClassName:
{class body}
Creating a Child Class

Classes that inherit from base classes are declared similarly to their parent class,
however, we need to provide the name of parent classes within the parentheses.

Syntax
Following is the syntax of child class -
class SubClassName (ParentClass1[, ParentClass2, ...]):
{sub class body}
Example:
parent class
class Parent:
def parentMethod(self):
print ("Calling parent method")
child class
class Child(Parent):
def childMethod(self):

print ("Calling child method")

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

instance of child

c = Child()

calling method of child class
c.childMethod()

calling method of parent class
c.parentMethod()

Python - Multiple Inheritance

Multiple inheritance in Python allows you to construct a class based on more than one
parent classes. The Child class thus inherits the attributes and method from all parents.
The child can override methods inherited from any parent.

Syntax

class parent1:
#statements

class parent2:
#statements

class child(parent1, parent2):
#statements

Example

Python's standard library has a built-in divmod() function that returns a two-item tuple.
First number is the division of two arguments, the second is the mod value of the two
operands.

class division: --2Parent class-1
def__init__(self, a,b):
self.n=a
self.d=b
def divide(self):
return self.n/self.d
class modulus: --->--> Parent class-2
def __init_ (self, a,b):
self.n=a
self.d=b
def mod_divide(self):
return self.n%self.d

UNIT-V MCA 102 A Programming in Python

class div_mod(division,modulus): --->Multiple inheritance
def __init_ (self, a,b):
self.n=a
self.d=b
defdiv_and_mod(self):
divval=division.divide(self)
modval=modulus.mod_divide(self)
return (divval, modval)
x=div_mod(10,3)
print ("division:",x.divide())
print ("mod_division:",x.mod_divide())
print ("divmod: ' x.div_and_mod())

Python - Multilevel Inheritance

KMMIPS:TIRUPATI

In multilevel inheritance, a class is derived from another derived class. There exists
multiple layers of inheritance. We can imagine it as a grandparent-parent-child

relationship.
Example

In the following example, we are illustrating the working of multilevel inheritance.

parent class
class Universe:
def universeMethod(self):
print ("l am in the Universe")
child class
class Earth(Universe):
def earthMethod(self):
print ("l am on Earth")
another child class
class India(Earth):
def indianMethod(self):
print ("l am in India")
creating instance
person = India()
method calls
person.universeMethod()
person.earthMethod()
person.indianMethod()
Python - Hierarchical Inheritance

This type of inheritance contains multiple derived classes that are inherited from a single

base class. This is similar to the hierarchy within an organization.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Example

The following example illustrates hierarchical inheritance. Here, we have defined two
child classes of Manager class.

parent class
class Manager:
def managerMethod(self):
print ("l am the Manager")
child class
class Employee1(Manager):
def employee1Method(self):
print ("l am Employee one")
second child class
class Employee2(Manager):
def employee2Method(self):
print ("l am Employee two")
creating instances

emp1 =Employee1|()
emp2 = Employee2()

method calls
emp1.managerMethod()
emp1.employee1Method()
emp2.managerMethod()
emp2.employee2Method()

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q7. Write about super() function in Python.

In Python, super() function allows you to access methods and attributes of the parent
class from within a child class.

Example

In the following example, we create a parent class and access its constructor from a
subclass using the super() function.

parent class
class ParentDemo:
def __init__ (self, msg):
self.message = msg
def showMessage(self):
print(self.message)
child class
class ChildDemo(ParentDemo):
def __init_ (self, msg):
use of super function
super().__init__(msg)
creating instance
obj = ChildDemo("Welcome to Tutorialspoint!!")

obj.showMessage()

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q8. Explain about Access Modifiers in Python.

The Python access modifiers are used to restrict access to class members (i.e., variables
and methods) from outside the class. There are three types of access modifiers namely
public, protected, and private.

Public members — A class member is said to be public if it can be accessed from
anywhere in the program.

Protected members — They are accessible from within the class as well as by classes
derived from that class.

Private members — They can be accessed from within the class only.

Usually, methods are defined as public and instance variable are private. This
arrangement of private instance variables and public methods ensures implementation
of principle of encapsulation.

Access Modifiers in Python

Unlike C++ and Java, Python does not use the Public, Protected and Private keywords to
specify the type of access modifiers. By default, all the variables and methods in a Python
class are public.Python doesn't enforce restrictions on accessing any instance variable
or method. However, Python prescribes a convention of prefixing name of
variable/method with single or double underscore to emulate behavior of protected and
private access modifiers.

e To indicate that an instance variable is private, prefix it with double underscore
(suchas"__age").

e To imply that a certain instance variable is protected, prefix it with single
underscore (such as "_salary").

class Employee:
def __init__(self, name, age, salary):
self.name = name # public variable
self.__age = age # private variable
self._salary = salary # protected variable
def displayEmployee(self):
print ("Name : ", self.name, ", age: ", self.__age, ", salary: ", self._salary)

e1=Employee("Bhavana", 24, 10000)
print (e1.name)

print (e1._salary)
print (e1.__age)

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q9. Discuss about Polymorphism in Python and how it is implemented.
Polymorphism

Polymorphism allows objects of different classes to be treated as objects of a common
superclass. It is the ability to redefine methods for derived classes. The
term polymorphism refers to a function or method taking different forms in different
contexts. Since Python is a dynamically typed language, polymorphism in Python is very
easily implemented.

If a method in a parent class is overridden with different business logic in its different
child classes, the base class method is a polymorphic method.

Ways of implementing Polymorphism in Python
There are four ways to implement polymorphism in Python -
e Duck Typing
e Operator Overloading
e Method Overriding
¢ Method Overloading
i.Duck Typing in Python

Duck typing is a concept where the type or class of an object is less important than
the methods it defines. Using this concept, you can call any method on an object

without checking its type, as long as the method exists.
Ex:-
class Duck:
def sound(self):
return "Quack, quack!"
class AnotherBird:
def sound(self):
return "I'm similar to a duck!"
def makeSound(duck):

print(duck.sound())

UNIT-V MCA 102 A Programming in Python

creating instances

duck = Duck()

anotherBird = AnotherBird()
calling methods
makeSound(duck)

makeSound(anotherBird)

ii.Method Overriding in Python

KMMIPS:TIRUPATI

In method overriding, a method defined inside a subclass has the same name as a

method in its superclass but implements a different functionality.

from abc import ABC, abstractmethod

class shape(ABC):
@abstractmethod
def draw(self):
"Abstract method"
return
class circle(shape):
def draw(self):
super().draw()
print ("Draw a circle")
return
class rectangle(shape):
def draw(self):
super().draw()
print ("Draw a rectangle")

return

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

iii)Method Overloading in Python

When a class contains two or more methods with the same name but different

number of parameters then this scenario can be termed as method overloading.

Python does not allow overloading of methods by default, however, we can use the
techniques like variable-length argument lists, multiple dispatch and default

parameters to achieve this.
Example:
def add(*nums):
return sum(nums)
Call the function with different number of parameters
resultl = add(10, 25)
result2 = add(10, 25, 35)
print(resultl)
print(result2)
iv) Overloading Operators in Python

Suppose you have created a Vector class to represent two-dimensional vectors, what
happens when you use the plus operator to add them? Most likely Python will yell at
you. we define the __add__ method in your class to perform vector addition and then

the plus operator would behave as per expectation —

class Vector:
def __init__(self, a, b):
selfa=a
selfb=Db
def __str__(self):
return 'Vector (%d, %d)' % (self.a, self.b)
def __add__(self,other):

return Vector(self.a + other.a, self.b + other.b)

v1 = Vector(2,10)
v2 = Vector(5,-2)
print (vl + v2)

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q10. Explain about implementation of Polymorphism in Python using Dynamic

Binding

In object-oriented programming, the concept of dynamic binding is closely related to
polymorphism. In Python, dynamic binding is the process of resolving a method or

attribute at runtime, instead of at compile time.

According to the polymorphism feature, different objects respond differently to the
same method call based on their implementations. This behavior is achieved through
method overriding, where a subclass provides its implementation of a method

defined in its superclass.

The Python interpreter determines which is the appropriate method or attribute to
invoke based on the object's type or class hierarchy at runtime. This means that the
specific method or attribute to be called is determined dynamically, based on the

actual type of the object.

Example:
class shape:
def draw(self):
print ("draw method")
return

class circle(shape):
def draw(self):
print ("Draw a circle")

return

class rectangle(shape):
def draw(self):
print ("Draw a rectangle")

return

shapes = [circle(), rectangle()]
for shp in shapes:

shp.draw()

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q11. Explain about Python Abstract Classes in Python.

Abstraction is one of the important principles of object-oriented programming. It

refers to a programming approach by which only the relevant data about an object is
exposed, hiding all the other details. This approach helps in reducing the complexity

and increasing the efficiency of application development.
Types of Python Abstraction

There are two types of abstraction. One is data abstraction, wherein the original data

entity is hidden via a data structure that can internally work through the hidden data

entities. Another type is called process abstraction. It refers to hiding the underlying

implementation details of a process.
Python Abstract Class

In object-oriented programming terminology, a class is said to be an abstract class if
it cannot be instantiated, that is you can have an object of an abstract class. You can

however use it as a base or parent class for constructing other classes.
Create an Abstract Class

To create an abstract class in Python, it must inherit the ABC class that is defined in
the ABC module. This module is available in Python's standard library. Moreover, the
class must have at least one abstract method. Again, an abstract method is the one
which cannot be called but can be overridden. You need to decorate it

with @abstractmethod decorator.
Example:-
from abc import ABC, abstractmethod
class democlass(ABC):
@abstractmethod
def method1(self):
print ("abstract method")
return
def method?2(self):

print ("concrete method")

https://www.tutorialspoint.com/python/python_oops_concepts.htm

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

class concreteclass(democlass):
def method1(self):
super().method1()

return

obj = concreteclass()
obj.method1()

obj.method?2()

Q12. Explain about Interfaces and its implementation in Python.

In software engineering, an interface is a software architectural pattern. It is similar
to a class but its methods just have prototype signature definition without any
executable code or implementation body. The required functionality must be
implemented by the methods of any class that inherits the interface.The method

defined without any executable code is known as abstract method.
Interfaces in Python

Python doesn't have it or any similar keyword like interface . It uses abstract base

classes (in short ABC module) and @abstractmethod decorator to create interfaces.

An abstract class and interface appear similar in Python. The only difference in two
is that the abstract class may have some non-abstract methods, while all methods in
interface must be abstract, and the implementing class must override all the abstract
methods.

Rules for implementing Python Interfaces

We need to consider the following points while creating and implementing interfaces
in Python -

¢ Methods defined inside an interface must be abstract.

e Creating object of an interface is not allowed.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

e A class implementing an interface needs to define all the methods of that

interface.

e In case, a class is not implementing all the methods defined inside the

interface, the class must be declared abstract.

interfaces in Python are implemented using abstract base class (ABC). To use this

class, you need to import it from the abc module.
Example
In this example, we are creating a formal interface with two abstract methods.

from abc import ABC, abstractmethod
creating interface
class demolnterface(ABC):
@abstractmethod
def method1(self):
print ("Abstract method1")
return

@abstractmethod
def method?2(self):
print ("Abstract method1")
return
Let us provide a class that implements both the abstract methods.
class implementing the above interface
class concreteclass(demolnterface):
def method1(self):
print ("This is method1")
return
def method?2(self):
print ("This is method?2")
return
creating instance
obj = concreteclass()
method call
obj.method1()
obj.method?2()

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q13. Explain about Exception Handling in Python.

In Python, syntax errors are among the most common errors encountered by
programmers, especially those who are new to the language. This tutorial will help

you understand what syntax errors are, how to identify them, and how to fix them.
Syntax Error

A syntax error in Python (or any programming language) is an error that occurs when
the code does not follow the syntax rules of the language. Syntax errors are detected
by the interpreter or compiler at the time of parsing the code, and they prevent the

code from being executed.

These errors occur because the written code does not conform to the grammatical
rules of Python, making it impossible for the interpreter to understand and execute

the commands.
Common Causes of Syntax Errors
Following are the common causes of syntax errors —

e Missing colons (:) after control flow statements (e.g., if, for, while) — Colons are
used to define the beginning of an indented block, such as in functions, loops,
and conditionals.

e Incorrect indentation — Python uses indentation to define the structure of code
blocks. Incorrect indentation can lead to syntax errors

e Misspelled keywords or incorrect use of keywords.

e Unmatched parentheses, brackets, or braces — Python requires that all
opening parentheses (, square brackets [, and curly braces { have

corresponding closing characters),], and }.
Exception Handling in Python

Exception handling in Python refers to managing runtime errors that may occur
during the execution of a program. In Python, exceptions are raised when errors or
unexpected situations arise during program execution, such as division by zero, trying
to access a file that does not exist, or attempting to perform an operation on

incompatible data types.

Python provides two very important features to handle any unexpected error in your
Python programs and to add debugging capabilities in them , they are Exception

Handling and Assertions .

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Assertions in Python

An assertion is a sanity-check that you can turn on or turn off when you are done with

your testing of the program.

The easiest way to think of an assertion is to liken it to a raise-if statement (or to be
more accurate, a raise-if-not statement). An expression is tested, and if the result

comes up false, an exception is raised.

Programmers often place assertions at the start of a function to check for valid input,

and after a function call to check for valid output.
The assert Statement

When it encounters an assert statement, Python evaluates the accompanying
expression, which is hopefully true. If the expression is false, Python raises

an AssertionError exception.
The syntax for assert is —
assert Expression[, Arguments]

If the assertion fails, Python uses ArgumentExpression as the argument for the
AssertionError. AssertionError exceptions can be caught and handled like any other
exception using the try-except statement, but if not handled, they will terminate the

program and produce a trace back.

Example:-

def KelvinToFahrenheit(Temperature):
assert (Temperature >= 0),"Colder than absolute zero!"
return ((Temperature-273)*1.8)+32

print (KelvinToFahrenheit(273))

print (int(KelvinToFahrenheit(505.78)))

print (KelvinToFahrenheit(-5))

Exception

An exception is an event, which occurs during the execution of a program that

disrupts the normal flow of the program's instructions. In general, when a Python

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

script encounters a situation that it cannot cope with, it raises an exception. An

exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception

immediately otherwise it terminates and quits.
Handling an Exception in Python

If you have some suspicious code that may raise an exception, you can defend your
program by placing the suspicious code in a try: block. After the try: block, include
an except: statement, followed by a block of code which handles the problem as

elegantly as possible.
e The try: block contains statements which are susceptible for exception
e If exception occurs, the program jumps to the except: block.
o If no exception in the try: block, the except: block is skipped.
Syntax:-
try:
You do your operations here
except Exceptionl:
If there is Exceptionl, then execute this block.
except Exceptionll:
If there is Exceptionll, then execute this block.
else:

If there is no exception then execute this block.

e A single try statement can have multiple except statements. This is useful
when the try block contains statements that may throw different types of

exceptions.

e You can also provide a generic except clause, which handles any exception.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

e After the except clause(s), you can include an else clause. The code in

the else block executes if the code in the try: block does not raise an exception.

e The else block is a good place for code that does not need the try: block's

protection
Example:-
try:
fh = open("testfile", "r")
fh.write("This is my test file for exception handling!!")
except |OError:
print ("Error: can\'t find file or read data")
else:
print ("Written content in the file successfully")
The except Clause with Multiple Exceptions
You can also use the same except statement to handle multiple exceptions as follows
try:
You do your operations here;
except(Exceptionl[, Exception2],...ExceptionN]]]):
If there is any exception from the given exception list,
then execute this block.
else:
If there is no exception then execute this block.
The try-finally Clause

You can use a finally: block along with a try: block. The finally block is a place to put
any code that must execute, whether the try-block raised an exception or not. The

syntax of the try-finally statement is this —

UNIT-V MCA 102 A Programming in Python

Syntax:-
try:

You do your operations here;

Due to any exception, this may be skipped.
finally:

This would always be executed.

You cannot use else clause as well along with a finally clause.

Example
try:
fh = open("testfile", "w")
fh.write("This is my test file for exception handling!!")
finally:
print ("Error: can\'t find file or read data")
Standard Exceptions

Here is a list of Standard Exceptions available in Python —

KMMIPS:TIRUPATI

Sr.No. | Exception Name & Description

1 Exception

Base class for all exceptions

2 Stoplteration

Raised when the next() method of an iterator does not point to any object.

3 SystemExit

Raised by the sys.exit() function.

4 StandardError

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Base class for all built-in exceptions except Stoplteration and SystemExit.

5 ArithmeticError

Base class for all errors that occur for numeric calculation.

6 OverflowError

Raised when a calculation exceeds maximum limit for a numeric type.

7 FloatingPointError

Raised when a floating point calculation fails.

8 ZeroDivisionError

Raised when division or modulo by zero takes place for all numeric types.

Q14. Explain about Data Structures and its types.

A data structure is a specialized format for organizing, storing, and managing data in
a computer's memory to allow for efficient access and modification. The choice of a

data structure significantly impacts the efficiency of a program's algorithms.

Data structures are generally classified into two primary categories: linear and non-

linear, with further categorization into primitive and non-primitive types.
Primary Classification of Data Structures
1. Linear Data Structures

In a linear data structure, data elements are arranged sequentially or linearly, where
each element is connected to its previous and next adjacent elements. Data traversal

is straightforward, typically involving iterating from one element to the next.
Examples of linear data structures include:

e Arrays: Elements of the same data type are stored in contiguous memory

locations, allowing for quick access using an index.

e Linked Lists: Elements (nodes) are linked by pointers and can be dynamic.

Types include singly, doubly, and circular linked lists.

e Stacks: Uses the Last-In, First-Out (LIFO) principle for adding and removing

elements from the top.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

e Queues: Uses the First-In, First-Out (FIFO) principle, adding elements to the

rear and removing them from the front.
2. Non-Linear Data Structures

These structures don't follow a simple sequence, allowing for more complex

relationships between data elements. Traversal is typically more involved.
Examples of non-linear data structures include:

e Trees: Hierarchical structures with a root node and child nodes. Examples

include binary trees and binary search trees (BSTs).

e Graphs: Composed of nodes (vertices) connected by links (edges),

representing networks.

e Hash Tables: Use a hash function to map keys to an array index, enabling fast

data retrieval.

An array is a type of linear data structure that is defined as a collection of elements
with same or different data types. They exist in both single dimension and multiple
dimensions. These data structures come into picture when there is a necessity to

store multiple elements of similar nature together at one place
Need for Arrays

Arrays are used as solutions to many problems from the small sorting problems to
more complex problems like travelling salesperson problem. There are many data
structures other than arrays that provide efficient time and space complexity for these
problems, so what makes using arrays better? The answer lies in the random access

lookup time.

Arrays provide O(1) random access lookup time. That means, accessing the 1t index
of the array and the 1000% index of the array will both take the same time. This is
due to the fact that array comes with a pointer and an offset value. The pointer points
to the right location of the memory and the offset value shows how far to look in the

said memory.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q15. Explain about Linked List Data structure.

A linked list is a linear data structure which can store a collection of "nodes"
connected together via links i.e. pointers. Linked lists nodes are not stored at a
contiguous location, rather they are linked using pointers to the different memory
locations. A node consists of the data value and a pointer to the address of the next
node within the linked list.

A linked list is a dynamic linear data structure whose memory size can be allocated
or de-allocated at run time based on the operation insertion or deletion, this helps in
using system memory efficiently. Linked lists can be used to implment various data

structures like a stack, queue, graph, hash maps, etc.

head —» data next » data next [—» data next [—» null

A linked list starts with a head node which points to the first node. Every node
consists of data which holds the actual data (value) associated with the node and a
next pointer which holds the memory address of the next node in the linked list. The
last node is called the tail node in the list which points to null indicating the end of
the list.

Linked Lists vs Arrays

In case of arrays, the size is given at the time of creation and so arrays are of fixed
lenghth where as Linked lists are dynamic in size and any number of nodes can be
added in the linked lists dynamically. An array can accommodate similar types of data

types where as linked lists can store various nodes of different data types.
Types of Linked List

Following are the various types of linked list.

Singly Linked Lists

Singly linked lists contain two "buckets" in one node; one bucket holds the data and
the other bucket holds the address of the next node of the list. Traversals can be done

in one direction only as there is only a single link between two nodes of the same list.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

head —»| data next |—® data next |—® data next |—» null

Doubly Linked Lists

Doubly Linked Lists contain three "buckets" in one node; one bucket holds the data
and the other buckets hold the addresses of the previous and next nodes in the list.
The list is traversed twice as the nodes in the list are connected to each other from
both sides.

head—»| prev | data | next || prev | data | next |~ null

Circular Linked Lists
Circular linked lists can exist in both singly linked list and doubly linked list.

Since the last node and the first node of the circular linked list are connected, the

traversal in this linked list will go on forever until it is broken.

head—»{ prev data next | prev data next

T

Operations in Linked List

Insertion at Beginning
In this operation, we are adding an element at the beginning of the list.

1. START

2. Create a node to store the data

3. Check if the list is empty

4. If the list is empty, add the data to the node and
assign the head pointer to it.

5. If the list is not empty, add the data to a node and link to the
current head. Assign the head to the newly added node.

6. ENDAlgorithm

UNIT-V MCA 102 A Programming in Python

Ex:-
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
class SLL:
def __init__(self):

self.head = None

Print the linked list
def listprint(self):
printval = self.head
print("Linked List: ")
while printval is not None:
print (printval.data)
printval = printval.next
def AddAtBeginning(self,newdata):

NewNode = Node(newdata)

Update the new nodes next val to existing node

NewNode.next = self.head
self.head = NewNode

11 =SLL()

l1.head = Node("731")

e2 = Node("672")

e3 = Node("63")

l1.head.next = e2

e2.next =e3

l1.AddAtBeginning("122")
L1.listprint()

Insertion at Ending

KMMIPS:TIRUPATI

In this operation, we are adding an element at the ending of the list.

Algorithm
1. START

UNIT-V MCA 102 A Programming in Python

2. Create a new node and assign the data
3. Find the last node
4. Point the last node to new node
5.END
Python Program
class Node:
def __init__(self, data=None):
self.data = data
self.next = None
class LL:
def __init__(self):
self.head = None
def listprint(self):
val = self.head
print("Linked List:")
while val is not None:
print(val.data)

val = val.next

(1 =LL()

l1.head = Node("23")

(2 = Node("12")

(3 = Node("7")

14 = Node("14")

L5 = Node("61")

Linking the first Node to second node
l1.head.next = (2

Linking the second Node to third node
[2.next =13

(3.next=14

l4.next =15

L1.listprint()

KMMIPS:TIRUPATI

Deletion in linked lists is also performed in three different ways. They are as follows

Deletion at Beginning

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

In this deletion operation of the linked, we are deleting an element from the beginning
of the list. For this, we point the head to the second node.

Algorithm:

1. START

2. Assign the head pointer to the next node in the list

3. END

from typing import Optional
class Node:
def __init__(self, data: int, next: Optional['Node'] = None):
self.data = data
self.next = next
class LinkedList:
def __init__(self):
self.nead = None
#display the list
def print_Llist(self):
p = self.head
print("\n[", end="")
while p:
print(f" {p.data} ", end="")
p = p.next
print("]")
#Insertion at the beginning
def insert_at_begin(self, data: int):
Lk = Node(data)
#point it to old first node
lk.next = self.head
#point firt to new first node
self.head = Lk
def delete_at_begin(self):
self.head = self.head.next
if __name__=="__main__":
linked_Llist = LinkedList()
linked_list.insert_at_begin(12)
linked_list.insert_at_begin(22)

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

linked_list.insert_at_begin(30)
linked_list.insert_at_begin(44)
linked_list.insert_at_begin(50)

#print list

print("Linked List: ", end="")
linked_Llist.print_Llist()
linked_list.delete_at_begin()
print("Linked List after deletion: ", end="")
linked_Llist.print_Llist()

Linked List - Search Operation
Searching for an element in the list using a key element. This operation is done in the
same way as array search; comparing every element in the list with the key element

given.

Algorithm

1 START

2 If the list is not empty, iteratively check if the list
contains the key

3 If the key element is not present in the list, unsuccessful
search

4 END

Example c
lass Node:
def __init__(self, data=None):
self.data = data
self.next = None
class SLL:
def __init__(self):
self.head = None

Print the linked list
def listprint(self):
printval = self.head
print("Linked List: ")
while printval is not None:
print (printval.data)
printval = printval.next

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

11 =SLL()

l1.head = Node("731")
e2 = Node("672")

e3 = Node("63")

l1.head.next = e2
e2.next =e3

L1.listprint()

Q16. Explain about Stack Operations

A stack is a linear data structure where elements are stored in the LIFO (Last In First
Out) principle where the last element inserted would be the first element to be
deleted. A stack is an Abstract Data Type (ADT), that is popularly used in most
programming languages. It is named stack because it has the similar operations as
the real-world stacks, for example — a pack of cards or a pile of plates, etc.

Stack Representation

A stack allows all data operations at one end only. At any given time, we can only
access the top element of a stack.

The following diagram depicts a stack and its operations -

g
3
m
(-]
3
3
Last In - First Out
Push | Pop
Data Element Data Element
Data Element Data Element
Data Element Data Element
Data Element Data Element
Data Element Data Element ‘
|
Stack Stack

A stack can be implemented by means of Array, Structure, Pointer, and Linked List.
Stack can either be a fixed size one or it may have a sense of dynamic resizing. Here,
we are going to implement stack using arrays, which makes it a fixed size stack
implementation.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Basic Operations on Stacks

Stack operations are usually performed for initialization, usage and, de-initialization
of the stack ADT.

The most fundamental operations in the stack ADT include: push(), pop(), peek(),
isFull(), isEmpty(). These are all built-in operations to carry out data manipulation
and to check the status of the stack.Stack uses pointers that always point to the
topmost element within the stack, hence called as the top pointer.

Stack Insertion: push()
The push() is an operation that inserts elements into the stack. The following is an
algorithm that describes the push() operation in a simpler way.
Algorithm
1. Checks if the stack is full.
2. If the stack is full, produces an error and exit.
3. If the stack is not full, increments top to point next
empty space.
4. Adds data element to the stack location, where top
is pointing.
5. Returns success.

Stack Deletion: pop()
The pop() is a data manipulation operation which removes elements from the stack.
The following pseudo code describes the pop() operation in a simpler way.

Algorithm

1. Checks if the stack is empty.

2. If the stack is empty, produces an error and exit.

3. If the stack is not empty, accesses the data element at
which top is pointing.

4. Decreases the value of top by 1.

5. Returns success.

Retrieving topmost Element from Stack: peek()

The peek() is an operation retrieves the topmost element within the stack, without
deleting it. This operation is used to check the status of the stack with the help of the
top pointer.

Algorithm

1. START

2. return the element at the top of the stack

3.END

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Verifying whether the Stack is full: isFull()
The isFull() operation checks whether the stack is full. This operation is used to check
the status of the stack with the help of top pointer.

Algorithm

1. START

2. If the size of the stack is equal to the top position of the stack,
the stack is full. Return 1.

3. Otherwise, return O.

4. END

Python Implementation
MAXSIZE = 8

stack = [0] * MAXSIZE
top = -1;

def isempty():
if(top == -1):
return 1
else:
return O

def isfull():
if(top == MAXSIZE):
return 1
else:
return O

def peek():
return stack[top]

def pop():
global data, top
if(isempty() = 1):
data = stack[top];
top =top - 1;
return data
else:
print("Could not retrieve data, Stack is empty.")
return data

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

def push(data):
global top
if(isfull() != 1):
top=top+1
stack[top] = data
else:
print("Could not insert data, Stack is full.")
return data

push(10)
push(62)
push(123)
push(15)
print("Element at top of the stack: ", peek())
print("Elements: ")
while(isempty() = 1):
data = pop();
print(data,end ="")
print("\nStack full: ",bool({True: 1, False: O} [isfull() == 1]))
print("Stack empty: ",bool({True: 1, False: 0} [isempty() == 1]))

Q17. Explain about QUEUE operations

Queue is a linear data structure where elements are stored in the FIFO (First In First
Out) principle where the first element inserted would be the first element to be
accessed. A queue is an Abstract Data Type (ADT) similar to stack, the thing that
makes queue different from stack is that a queue is open at both its ends. The data is
inserted into the queue through one end and deleted from it using the other end.
Queue is very frequently used in most programming languages.

A real-world example of queue can be a single-lane one-way road, where the vehicle
enters first, exits first. More real-world examples can be seen as queues at the ticket
windows and bus-stops.

Front / Head Back / Tail / Rear
Y EEEREEEE Enqueue
Dequeue

Queue Data Structure

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Representation of Queues

Similar to the stack ADT, a queue ADT can also be implemented using arrays, linked
lists, or pointers. As a small example in this tutorial, we implement queues using a
one-dimensional array.

Basic Operations in Queue

Queue operations also include initialization of a queue, usage and permanently
deleting the data from the memory.The most fundamental operations in the queue
ADT include: enqueue(), dequeue(), peek(), isFull(), isEmpty(). These are all built-
in operations to carry out data manipulation and to check the status of the queue.

Queue uses two pointers - front and rear. The front pointer accesses the data from
the front end (helping in enqueueing) while the rear pointer accesses data from the
rear end (helping in dequeuing).

Queue Insertion Operation: Enqueue()

The enqueue() is a data manipulation operation that is used to insert elements into
the stack. The following algorithm describes the enqueue() operation in a simpler
way.

Algorithm

1. START

2. Check if the queue is full.

3. If the queue is full, produce overflow error and exit.

4. If the queue is not full, increment rear pointer to point
the next empty space.

5. Add data element to the queue location, where the rear
is pointing.

6. return success.

7.END

Queue Deletion Operation: dequeue()
The dequeue() is a data manipulation operation that is used to remove elements from
the stack. The following algorithm describes the dequeue() operation in a simpler
way.
Algorithm
1. START
2. Check if the queue is empty.
3. If the queue is empty, produce underflow error and exit.
4. If the queue is not empty, access the data where front
is pointing.
5. Increment front pointer to point to the next available

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

data element.
6. Return success.
7. END
Queue - The peek() Operation
The peek() is an operation which is used to retrieve the frontmost element in the
queue, without deleting it. This operation is used to check the status of the queue
with the help of the pointer.
Algorithm
1. START
2. Return the element at the front of the queue
3.END

Queue - The isFull() Operation

The isFull() operation verifies whether the stack is full.

Algorithm

1. START

2. If the count of queue elements equals the queue size,
return true

3. Otherwise, return false

4. END

Queue - The isEmpty() operation

The isEmpty() operation verifies whether the stack is empty. This operation is used

to check the status of the stack with the help of top pointer.

Algorithm

1. START

2. If the count of queue elements equals zero, return true

3. Otherwise, return false

4. END

Queue Implementation in Python
MAX =6
intArray = [0] * MAX
front=0
rear =-1
itemCount =0
def peek():
return intArray[front]
def isEmpty():
return itemCount ==

def isFull():
return itemCount == MAX

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

def size():
return itemCount

def insert(data):
global rear, itemCount
if not isFull():
if rear == MAX-1:
rear = -1
rear +=1
intArray[rear] = data
itemCount +=1

def removeData():
global front, itemCount
data = intArray[front]
if front == MAX-1:
front=0
else:
front+=1
itemCount -=
return data

def main():
insert(3)
insert(b)
insert(9)
insert(1)
insert(12)
insert(15)
print("Queue size: ", size())
print("Queue: ")
foriin range(MAX):
print(intArray[i], end =" ")
if isFull():
print("\nQueue is full!")
num = removeData()
print("Element removed: ", num)
print("Queue size after deletion: ", size())
print("Element at front: ", peek())

main()

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q19. Explain about DQueue Operations.

Deque is a hybrid data structure that combines the features of a stack and a queue. It
allows us to insert and delete elements from both ends of the queue. The name
Deque is an abbreviation of Double-Ended Queue.

Imagine an event where you have two gates to enter and exit a place. People are
entering from the front gate and some are entering from the side gate. Now, when
people are leaving, they are leaving from the front gate and some sneak from the side
gate. Now, we need to manage flow of people from both ends. This is where Deque
comes into play.

Operations on Deque
Following are the major operations on Deque —

push_front(x): Insert element x at the front of the deque.
push_back(x): Insert element x at the back of the deque.
pop_front(): Remove the element from the front of the deque.
pop_back(): Remove the element from the back of the deque.
peek_front(): Get the element from the front of the deque.
peek_back(): Get the element from the back of the deque.
size(): Get the number of elements in the deque.

isEmpty(): Check if the deque is empty.

Add element at Front Add element at Rear

j Front Rear I_

10 15 20 30 40 50 60 70

- ™

Remove element from Front Remove element from Rear

Implementation of Deque

Let's understand how we can implement deque using array. For this, we need to
maintain two pointers, front and rear, to keep track of the front and back of the deque.
We also need to define the size of the deque.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

The push_front(x) Operation on Deque

When we insert an element at the front of the deque, we need to shift all the
elements to the right by one position. We will increment the front pointer by one and
insert the element at the front of the deque.

Algorithm for push_front(x)

Following are the steps to insert an element at the front of the deque —
1. Check if the deque is full. If it is full, return an error message.

2. Increment the front pointer by one.

3. Insert the element at the front position.

4. Increment the size of the deque.

push_back(x) Operation

This operation is used for inserting an element to the back of the deque. When we
insert an element at the back of the deque, we need to increment the rear pointer by
one and insert the element at the back of the deque.

Algorithm for push_back(x)
Following are the steps to insert an element at the back of the deque —

1. Check if the deque is full.

2. Increment the rear pointer by one.

3. Insert the element at the rear position.
4. Increment the size of the deque.

The pop_front() and pop_back() Operations on Deque

These operation is done when we need to remove elements from front or back. When
we remove an element from the front of the deque, we need to increment the front
pointer by one.

Similarly, when we remove an element from the back of the deque, we need to
decrement the rear pointer by one.

Algorithm for pop_front() and pop_back()
Following are the steps to remove an element from the front or back of the deque —

1. Check if the deque is empty.

2. Remove the element from the front or back of the deque.
3. Increment or decrement the front or rear pointer.

4. Decrement the size of the deque.

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

The peek_front() and peek_back() Operations on Deque
When we want to get the element from the front or back of the deque, we can use
the peek_front() and peek_back() operations.

Algorithm for peek_front() and peek_back()

Following are the steps to get the element from the front or back of the deque —
1. Check if the deque is empty.

2. If not empty, return the element from the front or back of the deque.

Applications of Deque
Some of the applications of deque are as follows —
e Deque is used for undo operation in text editors.
e Itis also used in implementation of the sliding window algorithm.
e Deque is used in implementing the data structures like double-ended priority
queue and double-ended stack.
In summary, we use deque when we need to perform insertion and deletion
operations at both ends of the data structure.

Q20. Explain Database Connection in Python.

Python being a high-level language provides support for various databases. We can
connect and run queries for a particular database using Python and without writing
raw queries in the terminal or shell of that particular database, we just need to have
that database installed in our system.

DB-API (Database API)

To address this issue of compatibility, Python Enhancement Proposal (PEP) 249
introduced a standardized interface known as DB-API. This interface provides a
consistent framework for database drivers, ensuring uniform behavior across
different database systems. It simplifies the process of transitioning between various
databases by establishing a common set of rules and methods.

Python Program

Databasel Database2 Database3

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

The process generally follows these four key steps:
The Connection Process

1.

Import the Driver: You must first import the appropriate Python module for
your specific database. While Python includes the sqglite3 module in its
standard library, other databases like MySQL or PostgreSQL require installing
a third-party library (e.g., mysql-connector-python or psycopg?2) using pip.
Establish a Connection: Use the driver's connect() method to establish a
connection to the database server. This function typically requires credentials
such as the host, user, password, and database name. This method returns a
connection object which manages the session and transactions.

Create a Cursor: From the connection object, you create a cursor object using
the cursor() method. The cursor acts as an interface for executing SQL
commands and fetching results from the database.

Execute Queries and Close: You can now execute SQL statements (CRUD
operations) using the cursor's execute() method. After operations are
complete, you should commit any changes using connection.commit() and then
close both the cursor and the connection to free up resources using the close()
methods.

Python MySQL Connector is a Python driver that helps to integrate Python and
MySQL. This Python MySQL library allows the conversion between Python and
MySQL data types. MySQL Connector API is implemented using pure Python and
does not require any third-party library.

Implementation in Python

import mysql.connector

try:

1. Establish the connection
connection = mysgl.connector.connect(

host="localhost",
user="yourusername",
password="yourpassword",
database="yourdatabase"

if connection.is_connected():

2. Create a cursor object
cursor = connection.cursor()

3. Execute a query

UNIT-V MCA 102 A Programming in Python KMMIPS:TIRUPATI

cursor.execute("SELECT * FROM your_table")

Fetch all results and iterate
records = cursor.fetchall()
for row in records:

print(row)

except mysql.connector.Error as e:
print(f"Error connecting to MySQL database: {e}")

finally:
4. Close the connection
if connection.is_connected():
cursor.close()
connection.close()
print("MySQL connection is closed")

