UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI
MCA 102A Programming in Python (2025-27 BATCH)

Q1: Explain about Development of Python, History and versions.

A:Python was developed by Guido van Rossum in the late 1980s and was officially
released in 1991. He created it at the Centrum Wiskunde & Informatica (CWI) in the
Netherlands. The language's design was inspired by the ABC language but focused heavily
on extensibility, exception handling, and promoting simple, readable, and concise code.
Van Rossum is often referred to as Python's "Benevolent Dictator For Life" (BDFL).

The history of Python is marked by three major version series:

o Python 1.0 (1994): The first full release, which added functional programming
tools like 1ambda, map, and reduce.

e Python 2.0 (2000): A major release that introduced important features like list
comprehensions and a complete garbage collection system. Python 2.x became
widely popular and was maintained until its end-of-life in January 2020.

Python 3.0 (2008): A significant upgrade that was not backward compatible with Python
2.x. It introduced crucial improvements such as better Unicode support, cleaner syntax,
and modernized libraries. Subsequent Python 3 versions (like 3.6+ with f-strings, 3.8 with
the walrus operator , and 3.11 with significant speed improvements) have solidified its
place.

Versions

The first release, Python 0.9.0, already had modules, exceptions, functions, and core data
types

In 1994, Python 1.0 was released, adding functional programming tools such as lambda, map,
and reduce

e In 2000, Python 2.0 introduced list comprehensions and garbage collection
Python 2.x became very popular, but eventually, it reached end of life in January 2020
In 2008, Python 3.0 was released as a major upgrade, not backward compatible with
Python 2.x

e Python 3 introduced better Unicode support, new syntax, and cleaner libraries
Over the years, Python 3 versions added features like async/await, f-strings, and data
classes.

e Each version was aimed at improving performance, readability, and developer
productivity

e Python 3.6 added formatted string literals, making string handling easier

e Python 3.7 introduced dataclasses and better type hinting

e Python 3.8 brought in the walrus operator (:=)

e Python 3.9 added dictionary merge and update operators

e Python 3.10 introduced pattern matching similar to switch-case

e Python 3.11 improved speed and efficiency significantly

e Python continues to evolve with an active community and contributions worldwide

e Today, it is one of the most widely used languages in programming, data science, and Al.



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

Each version has aimed at improving performance, readability, and developer productivity,
contributing to Python's current status as one of the most widely used languages in
programming, data science, and Al

Q2.: Discuss about features and applications of Python.

A: Python has many unique features that make it one of the most popular programming
languages today

-First, it is easy to learn and read, with syntax close to English

-Itis an interpreted language, meaning code is executed line by line without compilation
-Python is dynamically typed, so you don’t need to declare variable types explicitly

-It is portable and runs on multiple platforms like Windows, Linux, and macOS

-Python has an extensive standard library covering file handling, networking, and math
-It supports multiple programming paradigms: object-oriented, procedural, and functional
-It is open-source and free to use, with a strong global community

-Python integrates easily with C, C++, and Java

-It provides powerful support for GUI programming

-For data science, it has NumPy, pandas, and matplotlib

-For machine learning and Al, it has TensorFlow, PyTorch, and scikit-learn

Applications:

-For web development, frameworks like Django and Flask are widely used

-For automation, Python is a top choice due to its scripting capabilities

-Itis also used in game development with Pygame

-Python is important in cybersecurity, penetration testing, and networking

-It is heavily used in scientific computing and research

-Companies like Google, Facebook, NASA, and Netflix use Python for critical applications

-Due to its versatility, Python is useful in small projects as well as enterprise-level systems.
Q3.Why is Python popular?

A: Python is popular due to its easy-to-read syntax, vast standard library, and strong
community support. It is widely used in web development, data science, automation, and
more.

a) It is designed to emphasize code readability and reduce development time.
b) Python executes code line by line because it is interpreted, not compiled.
c) Its syntax is «close to natural English, making it beginner-friendly.

d)It supports multiple programming paradigms: procedural, object-oriented, and functional.



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

e) Python comes with a vast standard library for tasks like file handling, networking, math,

and more.

f) Dynamic typing allows developers to create flexible and reusable code.
g) Cross-platform nature makes Python code portable across Windows, macOS, and Linux.
h) Its open-source license ensures free access to the language and its libraries.
i) Python is integrated with languages like C, C++, and Java for high-performance tasks.
j) Popular libraries support machine learning, data analysis, and visualization (NumPy,

pandas, matplotlib).

k) Frameworks like Django and Flask make web development faster and scalable.

1) Its community support means thousands of tutorials, forums, and documentation are freely
available.

m) Python is used by tech giants such as Google, Netflix, and NASA for mission-critical tasks.

n) Automation scripts and DevOps rely on Python for efficiency and flexibility.

0) The Python Package Index (PyPI) hosts over 400,000 packages for different needs.

p) Its role in artificial intelligence and data science has boosted its global adoption.

q) Python simplifies complex tasks like networking, multithreading, and database
connectivity.

r) Due to its versatility, Python is an all-rounder suitable for students, researchers, and
professionals.

In conclusion, Python is one of the most reliable and adaptable programming languages

today.

Q:4. What are the key features of Python?

A: Python is known for its simplicity and readability, making it an excellent choice for
beginners and professionals alike. Key features include:

- Easy to learn and use

- Interpreted language (no need for compilation)

- Dynamically typed

- High-level language

- Extensive standard library

- Support for multiple programming paradigms (procedural, object-oriented, functional)
- Platform-independent

- Large community and ecosystem

- Integration capabilities with other languages and tools



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

- Strong support for data science, machine learning, web development, automation, and
more

- It is designed to emphasize code readability and reduce development time.

- Python executes code line by line because it is interpreted, not compiled.

- Its syntax is close to natural English, making it beginner-friendly.

- It supports multiple programming paradigms: procedural, object-oriented, and functional.

- Python comes with a vast standard library for tasks like file handling, networking, math,

and more.

Q: 5. What are the applications of Python?

A: Python is a versatile language used in a wide range of applications across various

domains. Some common applications include:

- Web development (using frameworks like Django and Flask)

- Data analysis and visualization (using libraries like pandas, matplotlib, seaborn)

- Machine learning and artificial intelligence (using libraries like scikit-learn, TensorFlow,
PyTorch)

- Automation and scripting

- Game development (using libraries like Pygame)

- Desktop application development

- Network programming

- Scientific computing

- Internet of Things (IoT)

- Cybersecurity and penetration testing

Python's simplicity and powerful libraries make it suitable for both small scripts and large-

scale enterprise applications.

Q:6. What are the main components of a Python program?

A: The main components include:
1. Comments

2. Variables and Data Types

3. Operators

4. Control Flow Statements

5. Functions

6. Classes and Objects

7. Modules and Packages

8. Input/Output operations



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

9. Exception Handling

Q:7 What is Python Virtual Machine?

A: Python Virtual Machine (PVM) is the runtime engine of Python. It interprets the
bytecode compiled from Python source code and executes it. PVM is responsible for
memory management, garbage collection, and other runtime services.The Python Virtual
Machine (PVM) is the runtime engine responsible for executing Python programs. It acts
as an interpreter for the bytecode.

The Execution Process:

1. When you run a Python source code file (a file), the Python interpreter first
compiles the source code into a low-level, platform-independent representation
called bytecode (stored in files).

2. The PVM then reads this bytecode.

3. The PVM's main job is to interpret and execute this bytecode instruction by
instruction.

Key Responsibilities:

o Bytecode Execution: Interpreting the compiled instructions and carrying out the
corresponding operations.

e Memory Management: The PVM manages the private heap space where all
Python objects are stored.

o Garbage Collection: It oversees the automatic reclamation of memory from
objects that are no longer in use.

o Runtime Services: It provides various services needed while the program is
running, such as managing the execution stack.

Bytecode

Bytecode is an intermediate representation of your source code. It's a low-level set of
instructions that is platform-independent, meaning it can run on any operating system
with a compatible Python interpreter.

Here's a simplified view of the process:

1. Source Code (.py): The original Python script.

2. Bytecode (.pyc): Compiled version of the script, optimised for execution.

3. Python Virtual Machine (PVM): Executes the bytecode.
This process ensures that Python code is portable and can be executed efficiently on any
platform.

The Compilation Process

When you run a Python script, Python automatically compiles it into bytecode. This
bytecode is stored in .pyc filesina _ pycache directory.



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

Source Code (.py) --——> Compiler ---> Bytecode (.pyc) ---> PVM ---> Execution
Execution Flow
1. Load Bytecode: The PVM loads the bytecode file.
2. Initialize Stack: Sets up the stack and other necessary structures.
3. Execute Instructions: The PVM executes each bytecode instruction in a loop.
4. Handle Functions: Calls and returns from functions are managed by the PVM.

5. Manage Scope: Variable scope and memory are managed to ensure proper
execution.

Q:8 How is Memory Managed in Python?

Python's memory management system is designed to handle memory allocation and
deallocation automatically, allowing developers to focus on application logic rather than
low-level memory concerns.

1. Private Heap Space: Python uses a private heap space to store all its objects and
data structures. This heap is managed internally by the Python Memory Manager.
The developer does not have direct access to this heap; the interpreter handles all
interactions.

2. Memory Allocator: The memory manager divides memory into various pools for
different object sizes. This helps to optimize allocation and reduce overhead.

3. Garbage Collector (GC): The GC is an inbuilt, essential component for automatic
memory deallocation. It runs periodically to reclaim memory occupied by objects
that are no longer referenced by the program.

4. Reference Counting: This is the primary mechanism for garbage collection. Each
object keeps a count of how many times it is being referenced. When this reference
count drops to zero, the object is immediately deallocated, and its memory is
returned to the heap.

5. Cyclic Garbage Collector: Reference counting alone cannot deal with cyclic
references (where two or more objects reference each other but are no longer
reachable by the program). Python's cyclic garbage collector runs occasionally to
identify and collect these uncollectable groups of objects, ensuring all unused
memory is eventually reclaimed.

Q: 9 What is Garbage Collection in Python?

Garbage Collection in Python is the automatic process of reclaiming memory that was
previously allocated to objects but is no longer being used or referenced by the running
program. This automation is key to Python's high-level nature, preventing memory leaks
and simplifying development.

Python employs a multi-strategy approach to garbage collection:



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

1.

Reference Counting (Primary): This is Python's most immediate form of
collection. Every object maintains a count of the number of references pointing to
it. When an object’s reference count drops to zero, it is instantly considered
"garbage" and its occupied memory is immediately freed.
o Example: When a variable goes out of scope or is explicitly deleted, the
reference count of the object it pointed to decreases.
Generational Cyclic Garbage Collector (Secondary): This collector handles the
special case of cyclic references—situations where objects are pointing to each
other, resulting in a reference count greater than zero, even though the objects are
no longer accessible from the rest of the program.
o The collector divides objects into three "generations" (0, 1, 2) based on how
long they have survived. New objects start in generation 0. If they survive
a collection cycle, they move to generation 1, and so on.
o Older generations are checked less frequently, based on the hypothesis that
the longer an object lives, the longer it is likely to continue living. This
strategy significantly improves collection efficiency.

This combination ensures that most garbage is quickly collected via reference counting,
while complex cyclic structures are handled by the slower, generational collector.

Q.10 How does Reference Counting work?

Reference Counting is the primary and most immediate mechanism Python uses for
automatic memory management and garbage collection. It ensures that memory is
reclaimed as soon as an object is no longer needed.

Mechanism:

Reference Count: Every object in Python maintains an internal counter, known
as its reference count. This counter tracks the number of times the object is being
referenced by names, other objects, or containers in the program.
Incrementing the Count: The reference count is incremented whenever a new
reference points to the object. This happens when:

o A new variable is assigned to the object (e.g., ).

o The object is placed in a container (e.g., a list or dictionary).

o The object is passed as an argument to a function.
Decrementing the Count: The reference count is decremented whenever a
reference to the object is removed. This happens when:

o A variable referencing the object is reassigned to another object (e.g.,

changes to ).

o A variable explicitly goes out of scope (e.g., a function call finishes).

o The object is explicitly deleted (e.g., ).

o The object is removed from a container.



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

4. Deallocation: When the reference count drops to zero, it means the object is no
longer accessible or useful to the program. At this point, the memory occupied by
the object is immediately released back to the private heap space for reuse.

The main drawback of simple reference counting is its inability to detect and clean up
cyclic references, which is where Python's secondary cyclic garbage collector steps in.

Q12: How to install Python on Windows?
Ans
1. Download the Python Installer

1. Go to the official Python Downloads page for Windows.
(https://www.python.org/).

2. Find the link for the latest stable Python 3 release (e.g., Python 3.x.x).

3. Click the appropriate installer link for your system: Windows installer (64-bit) is
recommended for most modern computers. If you have an older 32-bit system,

choose the 32-bit installer

2. Run the Installer

1. Locate the downloaded .exe file (e.g., python-3.x.x-amd64.exe) and double-
click it to run the installer.

2. Crucial Step: On the first installation screen, make sure to check the box that
says ""Add python.exe to PATH'". Checking this box allows you to run Python
from the Command Prompt or PowerShell, which is highly recommended.

3. Choose your installation type:

o "Install Now": Performs an installation with the recommended default
settings for the current user. This is generally the fastest and easiest option
for beginners.

o "Customize installation": Allows you to change the install location,
features like documentation or IDLE, and other advanced options.

The most common and recommended way to install Python on Windows is by using the

official installer from the Python Software Foundation website.
3. Complete the Installation
1. Ifyou chose "Install Now", the installation will proceed automatically.

2. Ifyou chose to "Customize installation"”, ensure that "pip" and "IDLE" are selected

(they usually are by default), and then proceed through the remaining screens. On



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

the Advanced Options screen, verify that "Add Python to environment variables"

is checked (if you missed it on the first screen).
3. Click Install.

4. Once complete, you should see a "Setup was successful” message. You may also see

an option to disable the path length limit, which can be useful and harmless to click.

5. Click Close.
Q: How to verify the Python installation path?
Ans:
To Verify the Installation
To confirm Python is installed and accessible via your command line:

1. Open the Command Prompt (search for cmd in the Start menu) or PowerShell.

2. Type the following command and press Enter:

python --version

3. Ifthe installation was successful and you added it to PATH, you should see the
installed Python version (e.g., Python 3.10.11).

4. You can also check the package installer pip by typing:

Q: How to install pandas in Python?

A: To install Pandas in Python on a Windows operating system, follow these steps:
¢ Ensure Python and pip are installed:

o Open the Command Prompt by searching for "cmd" in the Windows search

bar.
o Verify Python is installed by typing python --version and pressing Enter.

o Verify pip is installed by typing pip --version and pressing Enter. If pip is not
installed or needs updating, you can upgrade it using python.exe -m pip

install --upgrade pip.

o Install Pandas:



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

In the Command Prompt, type the following command and press Enter:
pip install pandas

e This command will download and install the Pandas library and its dependencies
from the Python Package Index (PyPI). An active internet connection is required for

this step.
¢ Verify the installation:

o Open the Python interactive shell by typing python in the Command Prompt

and pressing Enter.
o Import Pandas and check its version:
Python

import pandas as pd

print(pd._version__)

e Ifthe Pandas version is displayed without any errors, the installation was

successful.
Q: How to verify and install Python packages?
Installing Python Packages

Python packages are typically installed using pip, the package installer for Python. Open

your terminal or command prompt and Use the pip install command.
Code
pip install package_name

Replace package_name with the actual name of the package you want to install

(e.g., requests, numpy, pandas).
e For packages listed in a requirements.txt file:
Code
pip install -r requirements.txt

Verifying Installed Python Packages



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

Several methods can be used to verify if a Python package is installed and to check its

version.

e Using pip list: This command displays a list of all installed packages and their

versions in the current Python environment.

Code
pip list
e Using pip show <package_name>: This provides detailed information about a

specific package, including its version, location, and dependencies.

Code
pip show package_name
e Using pip freeze: This command outputs a list of installed packages and their exact

versions in a format suitable for a requirements.txt file.

Code
pip freeze
o Importing the package in a Python interpreter: If the package can be imported
without an ImportError, it is installed. Many packages also have

a _version__ attribute to check the version.
Python

import package_name

print(package_name._ version_)
Important Considerations:
e Virtual Environments:

It is highly recommended to use virtual environments (e.g., venv or conda) to isolate project
dependencies and avoid conflicts between different projects. Activate the virtual
environment before installing or verifying packages to ensure they are managed within that

specific environment.
¢ Adding Python to PATH:

Ensure Python and pip are added to your system's PATH environment variable for easy
access from any directory in the terminal. The Python installer usually offers this option

during installation.



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI

Q. Explain about various important packages in Python.

Python boasts a rich ecosystem of packages that extend its functionality for various

domains. Here are some of the most important and widely used packages:
For Data Science and Machine Learning:
¢ NumPy:

The fundamental package for numerical computing in Python, providing support for large,
multi-dimensional arrays and matrices, along with a collection of mathematical functions to

operate on these arrays.
e Pandas:

Built on top of NumPy, Pandas provides data structures like DataFrames and Series, making

data manipulation, analysis, and cleaning efficient and intuitive.
e Matplotlib:

A comprehensive library for creating static, animated, and interactive visualizations in

Python, essential for data exploration and presentation.
e Seaborn:

A high-level data visualization library based on Matplotlib, offering a more aesthetically

pleasing and statistically oriented approach to creating plots.
e Scikit-learn:

A robust and widely used library for machine learning, providing implementations of
various algorithms for classification, regression, clustering, dimensionality reduction, and

more.
¢ TensorFlow / PyTorch:

Leading open-source frameworks for deep learning, enabling the creation and training of
complex neural networks for tasks like image recognition, natural language processing, and

more

For Web Development:



UNIT-I MCA 102 A Programming in Python KMMIPS:TIRUPATI
¢ Django:

A high-level, full-stack web framework that encourages rapid development and clean,

pragmatic design. It includes an ORM, admin interface, and more.
¢ Flask:

A lightweight and flexible micro-framework for building web applications, offering more

control and requiring fewer dependencies than Django.
o FastAPI:

A modern, high-performance web framework for building APIs, leveraging Python type

hints and offering automatic interactive documentation.
¢ Requests:

A user-friendly library for making HTTP requests, simplifying interaction with web services

and APIs.

For Other Domains:
e Beautiful Soup:

Alibrary for parsing HTML and XML documents, commonly used for web scraping.
e OpenCV:

A powerful library for computer vision and image processing tasks, including image

manipulation, object detection, and facial recognition.
e Pygame:

A set of Python modules designed for writing video games, providing functionalities for

graphics, sound, and input handling.
¢ NLTK (Natural Language Toolkit):

A comprehensive library for working with human language data, providing tools for

tokenization, stemming, tagging, parsing, and more in natural language processing.
e PyTest:

A popular and powerful testing framework for Python, known for its simplicity and

extensibility



