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Association Analysis 

Association rule mining finds interesting associations and relationships among large 

sets of data items. This rule shows how frequently a item set occurs in a transaction. A 

typical example is a Market Based Analysis. 

Market Based Analysis is one of the key techniques used by large relations to show 

associations between items. It allows retailers to identify relationships between the 

items that people buy together frequently. 

In association rule mining there are 3 types of algorithms. 

1. Apriori algorithm 

2. Fp growth algorithm 

3. Eclact algorithm. 

But here mainly discuss about apriori algorithm and fp growth algorithm. 

Frequent Item set  

Frequent itemsets are those items whose support is greater than the threshold value or 

user-specified minimum support. It means if A & B are the frequent itemsets together, 

then individually A and B should also be the frequent itemset. 

Frequent Item set Generation 

Frequent Mining shows which items appear together in a transaction or 

relation.Frequent mining is generation of association rules from a Transactional 

Dataset. 

 If there are 2 items X and Y purchased frequently then its good to put them together 

in stores or provide some discount offer on one item on purchase of other item. This 

can really increase the sales.  

For example it is likely to find that if a customer buys Milk and bread he/she also 

buys Butter. So the association rule is [‘milk]^[‘bread’]=>[‘butter’]. So seller can 

suggest the customer to buy butter if he/she buys Milk and Bread. 

Important Definitions : 

 Support: It is one of the measure of interestingness. This tells about usefulness and 

certainty of rules. 5% Support means total 5% of transactions in database follow 

the rule. 

     Support(A -> B) = Support_count(A ∪  B) 

 Confidence: A confidence of 60% means that 60% of the customers who purchased 

a milk and bread also bought butter. 

   Confidence(A -> B) = Support_count(A ∪  B) / Support_count(A) 

If a rule satisfies both minimum support and minimum confidence, it is a strong rule.  
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 Support_count(X): Number of transactions in which X appears. If X is A union B 

then it is the number of transactions in which A and B both are present. 

 Maximal Itemset: An itemset is maximal frequent if none of its supersets are 

frequent. 

 Closed Itemset: An itemset is closed if none of its immediate supersets have same 

support count same as Itemset. 

 K- Itemset: Itemset which contains K items is a K-itemset. So it can be said that an 

itemset is frequent if the corresponding support count is greater than minimum 

support count. 

 

Example On finding Frequent Itemsets – Consider the given dataset with given 

transactions.  

  

 Lets say minimum support count is 3 

 Relation hold is maximal frequent => closed => frequent 

1-frequent: {A} = 3; // not closed due to {A, C} and not maximal {B} = 4; // 

not closed due to {B, D} and no maximal {C} = 4; // not closed due to {C, D} 

not maximal {D} = 5; // closed item-set since not immediate super-set has 

same count. Not maximal  

2-frequent: {A, B} = 2 // not frequent because support count < minimum 

support count so ignore {A, C} = 3 // not closed due to {A, C, D} {A, D} = 3 

// not closed due to {A, C, D} {B, C} = 3 // not closed due to {B, C, D} {B, D} 

= 4 // closed but not maximal due to {B, C, D} {C, D} = 4 // closed but not 

maximal due to {B, C, D}  

3-frequent: {A, B, C} = 2 // ignore not frequent because support count < 

minimum support count {A, B, D} = 2 // ignore not frequent because 

support count < minimum support count {A, C, D} = 3 // maximal frequent 

{B, C, D} = 3 // maximal frequent  

4-frequent: {A, B, C, D} = 2 //ignore not frequent. 
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Apriori Algorithm: 

The Apriori algorithm uses frequent itemsets to generate association rules, and it is 

designed to work on the databases that contain transactions. With the help of these 

association rule, it determines how strongly or how weakly two objects are connected. 

This algorithm uses a breadth-first search and Hash Tree to calculate the itemset 

associations efficiently. It is the iterative process for finding the frequent itemsets from 

the large dataset. 

 

FLOW CHART  
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Steps for Apriori Algorithm: 

Below are the steps for the apriori algorithm: 

Step-1: Determine the support of itemsets in the transactional database, and select the 

minimum support and confidence. 

Step-2: Take all supports in the transaction with higher support value than the 

minimum or selected support value. 

Step-3: Find all the rules of these subsets that have higher confidence value than the 

threshold or minimum confidence. 

Step-4: Sort the rules as the decreasing order of lift. 
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Apriori Algorithm Working 

We will understand the apriori algorithm using an example and mathematical 

calculation: 

Example: Suppose we have the following dataset that has various transactions, and 

from this dataset, we need to find the frequent itemsets and generate the association 

rules using the Apriori algorithm: 

 

Solution:     

Step-1: Calculating C1 and L1: 

o In the first step, we will create a table that contains support count (The frequency 

of each itemset individually in the dataset) of each itemset in the given dataset. 

This table is called the Candidate set or C1. 

Item set Support-count 

A 6 

B 7 

C 5 

D 2 

E 1 

Now, we will take out all the itemsets that have the greater support count that the 

Minimum Support (2). It will give us the table for the frequent itemset L1. 
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Since all the itemsets have greater or equal support count than the minimum support, 

except the E, so E itemset will be removed. 

Step-2: Candidate Generation C2, and L2: 

o In this step, we will generate C2 with the help of L1. In C2, we will create the pair 

of the itemsets of L1 in the form of subsets. 

o After creating the subsets, we will again find the support count from the main 

transaction table of datasets, i.e., how many times these pairs have occurred 

together in the given dataset. So, we will get the below table for C2: 

Item set Support-count 

{A,B} 4 

{A,C} 4 

{A,D} 1 

{B,C} 4 

{B,D} 2 

{C,D} 0 

o Again, we need to compare the C2 Support count with the minimum support 

count, and after comparing, the itemset with less support count will be 

eliminated from the table C2. It will give us the below table for L2. 

Item set Support-count 

{A,B} 4 

{A,C} 4 

{B,C} 4 

{B,D} 2 

Step-3: Candidate generation C3, and L3: 

o For C3, we will repeat the same two processes, but now we will form the C3 table 

with subsets of three itemsets together, and will calculate the support count from 

the dataset. It will give the below table: 
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Item set Support-count 

{A,B,C} 2 

{B,C,D} 1 

{A,C,D} 0 

{A,B,D} 0 

Now we will create the L3 table. As we can see from the above C3 table, there is only 

one combination of itemset that has support count equal to the minimum support 

count. So, the L3 will have only one combination, i.e., {A, B, C}. 

Step-4: Finding the association rules for the subsets: 

To generate the association rules, first, we will create a new table with the possible rules 

from the occurred combination {A, B.C}. For all the rules, we will calculate the 

Confidence using formula sup( A ^B)/A. After calculating the confidence value for all 

rules, we will exclude the rules that have less confidence than the minimum 

threshold(50%). 

Rules Support Confidence 

A ^B → C 2 Sup{(A ^B) ^C}/sup(A ^B)= 2/4=0.5=50% 

B^C → A 2 Sup{(B^C) ^A}/sup(B ^C)= 2/4=0.5=50% 

A^C → B 2 Sup{(A ^C) ^B}/sup(A ^C)= 2/4=0.5=50% 

C→ A ^B 2 Sup{(C^( A ^B)}/sup(C)= 2/5=0.4=40% 

A→ B^C 2 Sup{(A^( B ^C)}/sup(A)= 2/6=0.33=33.33% 

B→ B^C 2 Sup{(B^( B ^C)}/sup(B)= 2/7=0.28=28% 
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As the given threshold or minimum confidence is 50%, so the first three rules A ^B → C, 

B^C → A, and A^C → B can be considered as the strong association rules for the given 

problem. 

EX:2: Consider the following dataset and we will find frequent itemsets and generate 

association rules for them. 

 

minimum support count is 2 

minimum confidence is 60% 

Step-1: K=1 

(I) Create a table containing support count of each item present in dataset – 

Called C1(candidate set) 

 

(II) compare candidate set item’s support count with minimum support count(here 

min_support=2 if support_count of candidate set items is less than min_support then 

remove those items). This gives us itemset L1. 
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Step-2: K=2 

 Generate candidate set C2 using L1 (this is called join step). Condition of joining 

Lk-1 and Lk-1 is that it should have (K-2) elements in common. 

 Check all subsets of an itemset are frequent or not and if not frequent remove that 

itemset.(Example subset of{I1, I2} are {I1}, {I2} they are frequent.Check for each 

itemset). 

 Now find support count of these itemsets by searching in dataset. 

 

(II) compare candidate (C2) support count with minimum support count(here 

min_support=2 if support_count of candidate set item is less than min_support then 

remove those items) this gives us itemset L2. 

 

Step-3: 

 Generate candidate set C3 using L2 (join step). Condition of joining Lk-1 and Lk-

1 is that it should have (K-2) elements in common. So here, for L2, first element 

should match. 

So itemset generated by joining L2 is {I1, I2, I3}{I1, I2, I5}{I1, I3, i5}{I2, I3, I4}{I2, I4, 

I5}{I2, I3, I5} 
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 Check if all subsets of these itemsets are frequent or not and if not, then remove 

that itemset.(Here subset of {I1, I2, I3} are {I1, I2},{I2, I3},{I1, I3} which are frequent. 

For {I2, I3, I4}, subset {I3, I4} is not frequent so remove it. Similarly check for every 

itemset). 

 find support count of these remaining itemset by searching in dataset. 

 

 

 

(II) Compare candidate (C3) support count with minimum support count(here 

min_support=2 if support_count of candidate set item is less than min_support then 

remove those items) this gives us itemset L3. 

 

 

 

Step-4: 

 Generate candidate set C4 using L3 (join step). Condition of joining Lk-1 and Lk-

1 (K=4) is that, they should have (K-2) elements in common. So here, for L3, first 2 

elements (items) should match. 

 Check all subsets of these itemsets are frequent or not (Here itemset formed by 

joining L3 is {I1, I2, I3, I5} so its subset contains {I1, I3, I5}, which is not frequent). 

So no itemset in C4. 

 We stop here because no frequent itemsets are found further 

 

Thus, we have discovered all the frequent item-sets. Now generation of strong 

association rule comes into picture. For that we need to calculate confidence of each 

rule. 

Confidence – 

A confidence of 60% means that 60% of the customers, who purchased milk and bread 

also bought butter. 

Confidence(A->B)=Support_count(A∪B)/Support_count(A) 
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So here, by taking an example of any frequent itemset, we will show the rule 

generation. 

Itemset {I1, I2, I3} //from L3 

SO rules can be 

[I1^I2]=>[I3] //confidence = sup(I1^I2^I3)/sup(I1^I2) = 2/4*100=50% 

[I1^I3]=>[I2] //confidence = sup(I1^I2^I3)/sup(I1^I3) = 2/4*100=50% 

[I2^I3]=>[I1] //confidence = sup(I1^I2^I3)/sup(I2^I3) = 2/4*100=50% 

[I1]=>[I2^I3] //confidence = sup(I1^I2^I3)/sup(I1) = 2/6*100=33% 

[I2]=>[I1^I3] //confidence = sup(I1^I2^I3)/sup(I2) = 2/7*100=28% 

[I3]=>[I1^I2] //confidence = sup(I1^I2^I3)/sup(I3) = 2/6*100=33% 

So if minimum confidence is 50%, then first 3 rules can be considered as strong 

association rules. 

Advantages of Apriori Algorithm 

o This is easy to understand algorithm 

o The join and prune steps of the algorithm can be easily implemented on large 

datasets. 

Disadvantages of Apriori Algorithm 

o The apriori algorithm works slow compared to other algorithms. 

o The overall performance can be reduced as it scans the database for multiple 

times. 

o The time complexity and space complexity of the apriori algorithm is O(2D), which 

is very high. Here D represents the horizontal width present in the database. 

What is FP Growth Algorithm? 

The FP-Growth Algorithm is an alternative way to find frequent item sets without using 

candidate generations, thus improving performance. For so much, it uses a divide-and-

conquer strategy. The core of this method is the usage of a special data structure named 

frequent-pattern tree (FP-tree), which retains the item set association information. 
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Flow chart:  

 

Algorithm: 
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FP-Tree 

The frequent-pattern tree (FP-tree) is a compact data structure that stores quantitative 

information about frequent patterns in a database. Each transaction is read and then 

mapped onto a path in the FP-tree. This is done until all transactions have been read. 

Different transactions with common subsets allow the tree to remain compact because 

their paths overlap. 

A frequent Pattern Tree is made with the initial item sets of the database. The purpose 

of the FP tree is to mine the most frequent pattern. Each node of the FP tree represents 

an item of the item set. 

The root node represents null, while the lower nodes represent the item sets. The 

associations of the nodes with the lower nodes, that is, the item sets with the other item 

sets, are maintained while forming the tree. 

the FP-tree as the tree structure given below: 

1. One root is labelled as "null" with a set of item-prefix subtrees as children and a 

frequent-item-header table. 

2. Each node in the item-prefix subtree consists of three fields: 

o Item-name: registers which item is represented by the node; 

o Count: the number of transactions represented by the portion of the path 

reaching the node; 

o Node-link: links to the next node in the FP-tree carrying the same item 

name or null if there is none. 

3. Each entry in the frequent-item-header table consists of two fields: 

o Item-name: as the same to the node; 

o Head of node-link: a pointer to the first node in the FP-tree carrying the 

item name. 

Example 

Support threshold=50%, Confidence= 60% 
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Table 1: 

Transaction List of items 

T1 I1,I2,I3 

T2 I2,I3,I4 

T3 I4,I5 

T4 I1,I2,I4 

T5 I1,I2,I3,I5 

T6 I1,I2,I3,I4 

Solution: Support threshold=50% => 0.5*6= 3 => min_sup=3 

Table 2: Count of each item 

Item Count 

I1 4 

I2 5 

I3 4 

I4 4 

I5 2 

Table 3: Sort the itemset in descending order. 

Item Count 

I2 5 
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I1 4 

I3 4 

I4 4 

Build FP Tree 

Let's build the FP tree in the following steps, such as: 

1. Considering the root node null. 

2. The first scan of Transaction T1: I1, I2, I3 contains three items {I1:1}, {I2:1}, {I3:1}, 

where I2 is linked as a child, I1 is linked to I2 and I3 is linked to I1. 

3. T2: I2, I3, and I4 contain I2, I3, and I4, where I2 is linked to root, I3 is linked to I2 

and I4 is linked to I3. But this branch would share the I2 node as common as it is 

already used in T1. 

4. Increment the count of I2 by 1, and I3 is linked as a child to I2, and I4 is linked as 

a child to I3. The count is {I2:2}, {I3:1}, {I4:1}. 

5. T3: I4, I5. Similarly, a new branch with I5 is linked to I4 as a child is created. 

6. T4: I1, I2, I4. The sequence will be I2, I1, and I4. I2 is already linked to the root 

node. Hence it will be incremented by 1. Similarly I1 will be incremented by 1 as it 

is already linked with I2 in T1, thus {I2:3}, {I1:2}, {I4:1}. 

7. T5:I1, I2, I3, I5. The sequence will be I2, I1, I3, and I5. Thus {I2:4}, {I1:3}, {I3:2}, {I5:1}. 

8. T6: I1, I2, I3, I4. The sequence will be I2, I1, I3, and I4. Thus {I2:5}, {I1:4}, {I3:3}, {I4 

1}. 
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Mining of FP-tree is summarized below: 

1. The lowest node item, I5, is not considered as it does not have a min support 

count. Hence it is deleted. 

2. The next lower node is I4. I4 occurs in 2 branches , {I2,I1,I3:,I41},{I2,I3,I4:1}. 

Therefore considering I4 as suffix the prefix paths will be {I2, I1, I3:1}, {I2, I3: 1} this 

forms the conditional pattern base. 

3. The conditional pattern base is considered a transaction database, and an FP tree 

is constructed. This will contain {I2:2, I3:2}, I1 is not considered as it does not 

meet the min support count. 

4. This path will generate all combinations of frequent patterns : 

{I2,I4:2},{I3,I4:2},{I2,I3,I4:2} 

5. For I3, the prefix path would be: {I2,I1:3},{I2:1}, this will generate a 2 node FP-tree : 

{I2:4, I1:3} and frequent patterns are generated: {I2,I3:4}, {I1:I3:3}, {I2,I1,I3:3}. 

6. For I1, the prefix path would be: {I2:4} this will generate a single node FP-tree: 

{I2:4} and frequent patterns are generated: {I2, I1:4}. 
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Item Conditional Pattern 

Base 

Conditional FP-

tree 

Frequent Patterns 

Generated 

I4 {I2,I1,I3:1},{I2,I3:1} {I2:2, I3:2} {I2,I4:2},{I3,I4:2},{I2,I3,I4:2} 

I3 {I2,I1:3},{I2:1} {I2:4, I1:3} {I2,I3:4}, {I1:I3:3}, {I2,I1,I3:3} 

I1 {I2:4} {I2:4} {I2,I1:4} 

The diagram given below depicts the conditional FP tree associated with the conditional 

node I3. 

 

 

Advantages of FP Growth Algorithm 

Here are the following advantages of the FP growth algorithm, such as: 

o This algorithm needs to scan the database twice when compared to Apriori, 

which scans the transactions for each iteration. 

o The pairing of items is not done in this algorithm, making it faster. 

o The database is stored in a compact version in memory. 

o It is efficient and scalable for mining both long and short frequent patterns. 

Disadvantages of FP-Growth Algorithm 

This algorithm also has some disadvantages, such as: 

o FP Tree is more cumbersome and difficult to build than Apriori. 

o It may be expensive. 

o The algorithm may not fit in the shared memory when the database is large. 
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Difference between Apriori and FP Growth Algorithm 

Apriori FP Growth 

Apriori generates frequent patterns by making 

the itemsets using pairings such as single item 

set, double itemset, and triple itemset. 

FP Growth generates an FP-Tree 

for making frequent patterns. 

Apriori uses candidate generation where 

frequent subsets are extended one item at a 

time. 

FP-growth generates a 

conditional FP-Tree for every 

item in the data. 

Since apriori scans the database in each step, 

it becomes time-consuming for data where 

the number of items is larger. 

FP-tree requires only one 

database scan in its beginning 

steps, so it consumes less time. 

A converted version of the database is saved 

in the memory 

A set of conditional FP-tree for 

every item is saved in the 

memory 

It uses a breadth-first search It uses a depth-first search. 

 

 What is The ECLAT Algorithm? 
ECLAT is an acronym for Equivalence Class Clustering and bottom-up Lattice 

Traversal. ECLAT algorithm is a frequent pattern mining algorithm just like the apriori 

algorithm. We can say that the ECLAT algorithm is an efficient and scalable version of 

the apriori algorithm with the following improvements. 

 The apriori algorithm and the fp-growth algorithm work with the horizontal 

transaction dataset. On the contrary, the ECLAT algorithm works on a vertical 

data format.  

 ECLAT algorithm uses a depth-first search approach to traverse the itemsets. The 

Apriori algorithm uses a breadth-first approach to traverse the transaction 

dataset. 

How the algorithm work?  

 

The basic idea is to use Transaction Id Sets(tidsets) intersections to compute the 

support value of a candidate and avoiding the generation of subsets which do not 

https://codinginfinite.com/apriori-algorithm-numerical-example/
https://codinginfinite.com/apriori-algorithm-numerical-example/
https://codinginfinite.com/apriori-algorithm-numerical-example/
https://codinginfinite.com/fp-growth-algorithm-explained-with-numerical-example/
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exist in the prefix tree. In the first call of the function, all single items are used 

along with their tidsets. Then the function is called recursively and in each recursive 

call, each item-tidset pair is verified and combined with other item-tidset pairs. This 

process is continued until no candidate item-tidset pairs can be combined. 

Let us now understand the above stated working with an example:- 

Consider the following transactions record:- 

 

The above-given data is a boolean matrix where for each cell (i, j), the value denotes 

whether the j’th item is included in the i’th transaction or not. 1 means true while 0 

means false. 

We now call the function for the first time and arrange each item with it’s tidset in a 

tabular fashion:- 

k = 1, minimum support = 2 

Item Tidset 

Bread {T1, T4, T5, T7, T8, T9} 

Butter {T1, T2, T3, T4, T6, T8, T9} 

Milk {T3, T5, T6, T7, T8, T9} 

Coke {T2, T4} 

Jam {T1, T8} 

 

We now recursively call the function till no more item-tidset pairs can be combined:- 
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k = 2 

Item Tidset 

{Bread, Butter} {T1, T4, T8, T9} 

{Bread, Milk} {T5, T7, T8, T9} 

{Bread, Coke} {T4} 

{Bread, Jam} {T1, T8} 

{Butter, Milk} {T3, T6, T8, T9} 

{Butter, Coke} {T2, T4} 

{Butter, Jam} {T1, T8} 

{Milk, Jam} {T8} 

k = 3 

Item Tidset 

{Bread, Butter, Milk} {T8, T9} 

{Bread, Butter, Jam} {T1, T8} 

k = 4 

Item Tidset 

{Bread, Butter, Milk, Jam} {T8} 

We stop at k = 4 because there are no more item-tidset pairs to combine. 

Since minimum support = 2, we conclude the following rules from the given dataset:- 

Items Bought Recommended Products 

Bread Butter 

Bread Milk 

Bread Jam 

Butter Milk 

Butter Coke 

Butter Jam 

Bread and Butter Milk 

Bread and Butter Jam 

Example 2: 

Step-By-Step ECLAT Algorithm Explanation 

To perform association rule mining using the ECLAT algorithm, we first define the 

minimum support, confidence, and lift. After this, we will convert the transaction dataset 

to vertical format if it isn’t already so. Next, we perform candidate generation, pruning, 

database scan, and rule generation to create association rules. These steps are almost 

similar to the apriori algorithm.  

https://codinginfinite.com/association-rule-mining-explained-with-examples/
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Step 1: Convert Transaction Data to Vertical Format 

Normally, the transactions in a dataset are stored in horizontal format. It means that 

each row in the dataset contains a transaction ID and the corresponding items in the 

transaction as shown below.  

Transaction ID Items 

T1 I1, I3, I4 

T2 I2, I3, I5, I6 

T3 I1, I2, I3, I5 

T4 I2, I5 

T5 I1, I3, I5 

The dataset in Horizontal Format 

In vertical format, the rows in the transaction data contain an item and the 

corresponding transactions in which the item is present. The dataset in the vertical 

format looks as follows. 

Items Transaction IDs 

I1 T1,T3,T5 

I2 T2,T3,T4 

I3 T1,T2,T3,T5 

I4 T1 

I5 T2,T3,T4,T5 

I6 T2 

The dataset in Vertical Format 

Step 2: Candidate Generation From the Dataset 

After transforming the dataset into the vertical format, we use the candidate generation 

step to generate itemsets that can possibly be frequent itemsets. For this, we start by 

creating sets containing single items. If there are N items in the dataset, we create N 

candidate sets.  

After creating the candidate sets, we use the minimum support count to select frequent 

itemsets containing one item. Once we get the frequent itemsets with one item, we 

iteratively join them to create larger sets containing 2, 3, 4, 5, or more items.  
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In the candidate generation process, we generate the candidate itemsets containing k 

items by joining the frequent itemsets with k-1 items in common. This process is 

repeated until no new frequent itemsets can be generated. 

Step 3: Pruning the Candidate Itemsets 

The pruning step in the ECLAT algorithm is derived from the apriori algorithm. It is 

based on the concept that a subset of a frequent itemset must also be a frequent 

itemset. In other words, if we have an itemset having a subset that is not a frequent 

itemset, the itemset cannot be a frequent itemset. 

We use pruning to remove the candidate sets before even scanning the dataset to 

calculate the support count and minimize the time taken in executing the algorithm. 

After creating itemsets of K items, we use the following steps to prune the candidate set. 

For each candidate set having k items, we check if each of its subsets having k-1 is 

a frequent itemset or not. If yes, the candidate set is considered for generating 

frequent itemsets. Even if we find a single subset of the candidate set that is not a 

frequent itemset, we reject or prune the itemsets. 

Step 4: Frequent Itemset Generation 

After Pruning, we check the support count of the remaining candidate itemsets. For this, 

we scan the transaction dataset to find the support of each frequent itemset.  

After calculating the support count of each candidate itemset, we drop the itemsets 

having a support count less than the minimum support count from the candidate list. 

The rest of the itemsets are considered frequent itemsets.  

After generating the frequent itemsets having k items, we create candidate itemsets 

having k+1 items, perform pruning, database scan, and then frequent itemset 

generation to generate frequent itemsets having k+1 items.  

We iterate through steps 2 to 4 until we cannot generate more frequent itemsets. 

Step 4: Association Rule Generation 

After creating frequent itemsets, we generate association rules. If we have a frequent 

itemset {I}, we can create association rules in the form of {S}-> {I-S}. Here {S} is a subset 

of the frequent itemset {I}.  
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ECLAT Algorithm Numerical Example 

To explain the ECLAT algorithm using the numerical example, we will use the following 

dataset. 

 

Transaction ID Items 

T1 I1, I3, I4 

T2 I2, I3, I5, I6 

T3 I1, I2, I3, I5 

T4 I2, I5 

T5 I1, I3, I5 

The dataset in Horizontal format 

The above transaction dataset is in horizontal format. It contains five transactions having 

transaction IDs T1, T2, T3, T4, and T5. The dataset contains six different items namely I1, 

I2, I3, I4, I5, and I6.   

Convert Transaction Data to Vertical Format 

To proceed with the explanation of the ECLAT algorithm using numerical examples, we 

need to represent the dataset in vertical format. In vertical format, each row of the 

dataset represents an item and all the transactions in which the item is present. The 

transformed dataset looks as follows. 

Items Transaction IDs 

I1 T1,T3,T5 

I2 T2,T3,T4 

I3 T1,T2,T3,T5 

I4 T1 

I5 T2,T3,T4,T5 

I6 T2 

the dataset in vertical format 

The above dataset for the ECLAT algorithm numerical example contains five transactions 

having transaction IDs T1, T2, T3, T4, and T5. In the transactions, it contains six different 

items namely I1, I2, I3, I4, I5, and I6.  

Let us now use the Eclat algorithm to find association rules from the above dataset. For 

our numerical example, we will use the minimum support count of 2 and minimum 

confidence of 75 percent. To help us calculate the support of the itemsets, we will create 

a matrix representing the presence of items in a transaction as shown below. 
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 T1 T2 T3 T4 T5 

I1 1 0 1 0 1 

I2 0 1 1 1 0 

I3 1 1 1 0 1 

I4 1 0 0 0 0 

I5 0 1 1 1 1 

I6 0 1 0 0 0 

Transaction matrix 

The above matrix contains Items on the vertical axis and transaction IDs on the 

horizontal axis. If an item is present in a transaction, the corresponding cell is set to 1. 

Otherwise, it is set to 0. We will use this matrix to calculate the support count of 

itemsets as it is easier to scan this matrix compared to the transaction dataset. 

To calculate the support count of any given itemset, we will find the number of 

columns in which all the items in the given itemset are set to 1 in the above 

matrix.  

Create Frequent Itemsets With 1 Item 

The ECLAT algorithm starts by creating candidate itemsets with one item. For this, let us 

calculate the support count of each item. 

Itemset Transactions Support Count 

{I1} T1, T3, T5 3 

{I2} T2, T3, T4 3 

{I3} T1,T2,T3,T5 4 

{I4} T1 1 

{I5} T2,T3,T4,T5 4 

{I6} T2 1 

candidate itemset with one item 

The above table contains the support count of candidate itemsets with one item. Here, 

you can observe that the itemsets {I4} and {I6} have support count 1 which is less than 

the minimum support count 2. Hence, we will omit these itemsets from the candidate 
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table. After this, we will get the table containing frequent itemsets with a single item as 

shown below. 

 

 

Itemset Transactions Support Count 

{I1} T1, T3, T5 3 

{I2} T2, T3, T4 3 

{I3} T1,T2,T3,T5 4 

{I5} T2,T3,T4,T5 4 

Frequent itemset with one item 

In the above table, we have created frequent itemsets containing a single item. Now, we 

will calculate the frequent itemsets with two items. 

Create Frequent Itemsets With 2 Items 

To create frequent itemsets with two items, we will first create the candidate itemset 

with two items. For this, we will join all the frequent itemsets with one item with each 

other. After joining, we will get the following item sets. 

{I1,I2}, {I1,I3}, {I1,I5},{I2,I3},{I2,I5}, and {I3,I5}  

After creating the itemsets with two items, we need to prune the itemsets having 

subsets that are not frequent itemsets. As the {I1}, {I2}, {I3}, and {I5} all are frequent 

itemsets, no itemsets will be removed from the above list.  

As the next step, we will calculate the support count of each itemset having two items to 

create the candidate itemset. The result is tabulated below. 

Itemset Transactions Support 

Count 

{I1,I2} T3 1 

{I1,I3} T1, T3, T5 3 

{I1,I5} T3, T5 2 

{I2,I3} T2,T3 2 

{I2,I5} T2, T3, T4 3 

{I3,I5}  T2, T3, T5 3 

Candidate itemset with 2 items 

In the above candidate itemset, you can observe that the itemset {I1, I2} has the support 

count 1 which is less than the minimum support count. Hence, we will remove the above 
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itemset from the table and obtain the table containing frequent itemsets with two items 

as shown below. 

 

 

Itemset Transactions Support Count 

{I1,I3} T1, T3, T5 3 

{I1,I5} T3, T5 2 

{I2,I3} T2,T3 2 

{I2,I5} T2, T3, T4 3 

{I3,I5}  T2, T3, T5 3 

Frequent Itemsets with 2 items 

Here, we have obtained frequent itemsets with two items. Let us now calculate the 

frequent itemsets with three items. 

Calculate Frequent Itemsets With Three Items 

To calculate the frequent itemsets with three items, we first need to calculate the 

candidate set. For this, let us first join the frequent itemsets with two items and create 

the following itemsets with three items. 

{I1, I3, I5}, {I1, I2, I3}, {I1, I2, I5}, {I2, I3, I5} 

On the above itemsets, we will perform pruning to remove any itemset that has a subset 

that is not a frequent itemset. For this, we will create subsets of 2 items for each itemset 

and check if they are frequent itemsets or not. All the subsets of the above itemsets are 

tabulated below. 

Itemset Subsets All the subsets are frequent itemsets? 

{I1, I3, I5} {I1, I3},{I1, I5},{I3, I5} Yes 

{I1, I2, I3} {I1, I2}, {I1, I3}, {I2, I3} No 

{I1, I2, I5} {I1, I2},{I1, I5},{I2, I5} No 

{I2, I3, I5} {I2, I3}, {I2, I5}, {I3, I5} Yes 

Pruning the Itemsets with three items 

In the table, you can observe that the itemset {I1,I2 , I3} and {I1, I2, I5} contain the 

itemset {I1, I2} which is not a frequent itemset. Hence, we will prune the itemsets {I1, I2, 

I3} and {I1, I2, I5}. After this, we will get the itemsets {I1, I3, I5} and {I2, I3, I5} as candidate 

itemsets for the itemsets having three items. Let us calculate their support count. 
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Itemset Transactions Support Count 

{I2, I3, I5} T2, T3 2 

{I1, I3, I5} T3,T5 2 

Candidate itemsets with 3 items 

In the above table, both itemsets have a support count of 2 which is equal to the 

minimum support count. Hence, both itemsets will be considered frequent itemsets.  

Itemset Transactions Support Count 

{I2, I3, I5} T2, T3 2 

{I1, I3, I5} T3,T5 2 

Frequent Itemsets with 3 items 

Calculate Frequent Itemsets With Three Items. 

Now, we will calculate the frequent itemsets with four items. For this, we will first join the 

items in the frequent itemsets with three items to create itemsets with four items. We 

will get only one item set as shown below. 

{I1, I2, I3, I5} 

Now, the above itemset has four subsets with three elements i.e. {I2, I3, I5},{I1, I3, I5}, {I1, 

I2, I5}, {I1, I2, I3}. In these itemsets,  {I1, I2, I5} and {I1, I2, I3} are not frequent itemsets. 

Hence, we will prune the itemset {I1, I2, I3, I5}. Thus, we have no candidate set for 

itemsets with 4 items. Hence, the process of frequent itemset generation stops here.  

Now, let us tabulate all the frequent itemsets created in this numerical example on the 

ECLAT algorithm. 

Itemset Support Count 

{I1} 3 

{I2} 3 

{I3} 4 

{I5} 4 

{I1,I3} 3 

{I1,I5} 2 

{I2,I3} 2 

{I2,I5} 3 

{I3,I5}  3 

{I2, I3, I5} 2 

{I1, I3, I5} 2 
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Frequent Itemset Lattice 

The above table contains all the frequent itemsets in the given transaction data. This 

table is also called the itemset lattice. We often store this itemset lattice in the form of a 

tree in the memory. Then, the tree is used to generate the association rules. 

ECLAT vs Apriori algorithm: 

1. Apriori algorithm is a classical algorithm used to mining the frequent item sets in a 

given dataset. 

2. Coming to Eclat algorithm also mining the frequent itemsets but in vertical manner 

and it follows the depth first search of a graph. 

3. As per the speed,Eclat is fast than the Apriori algorithm. 

4. Apriori works on larger datasets where as Eclat algorithm works on smaller 

datasets. 

5. Memory Requirements: Since the ECLAT algorithm uses a Depth-First Search 

approach, it uses less memory than Apriori algorithm. 

6. Number of Computations: The ECLAT algorithm does not involve the repeated 

scanning of the data to compute the individual support values. 

 


