
Program – 1:

Draw an Use Case Diagram for Airline Reservation system using Star UML Tool

Aim: To draw an Use Case diagram for Airline Reservation system using Star UML

tool.

Description: A Use Case is a set of scenarios that describing an interaction

between a user and a system. A use case diagram displays the relationship among

actors and use cases.

The two main components of a use case diagram are use cases and actors.

 An Actor is represents a user or another system that will interact with the
system you are modelling.

 A Use case is an external view of the system that represents some action the
user might perform in order to complete a task.

 Use case diagrams specify the events of a system and their flows. But use

case diagram never describes how they are implemented.

 Use case diagram can be imagined as a black box where only the input,

output, and the function of the black box is known.

USECASE NAME:- AIRLINE TICKET RESERVATION SYSTEM

PURPOSE:-

The purpose of developing this use case is to provide the customer with the facilities to

enquire for a flight to know the availability of seats by using the flight number, flight date

and flight time of journey and to reserve the tickets for the given flight at given date & time

for specified number of persons. The customer should also have the possibility of canceling

tickets for an booked flight ticket.

USERS:-

1) Primary Users Customer 2) Secondary Users 1. Admin

2. Database

3. Interface

DESCRIPTION:-

1) The customer enters into the website of flight reservation system & should go to the

search menu given the flight number as input & search for the availability of seats as

input and search for availability of seats as input and search for availability of status

on that specified airplane.

2) If there is an availability of seats as specified in the search criteria then the customer

has to register himself with the airline reservation system by providing the necessary

details like name, address, phone number, email, address proof, Identify proof.

3) After the reservation completed the customer has to login to the system by given the

valid username and password.

4) One’s login is accepted the system then customer can go for reservation by click on

reservation option where has to provide to information like his name, data of

journey, starting station, source & destination, number of males, females, children’s,

total passengers, category etc….,

5) Upon the completion of the reservation the customer should preview the reservation

details & confirm to reservation.

6) For any reason the customer wishers to cancel the reservation seats then he has to

choose the cancellation option. In which he has to mention the Reservation ID (or)

Ticket ID.

7) For reserved the payment can be made through online either using credit, debit or

online payment.

8) If the step1 is not satisfied then the customer can choose for different flight or

different date.

9) Finally after completing required transactions the customer can logout the system.

Pre Conditions:

1. Any Customer to reserve a ticket he should be the registered user of the system.

2. Booking of seats are allowed if only seats are vacant.

3. The flight details and reservations should be stored in the database and should be

made accessible to the passengers at any point of time.

Post Conditions:

1. The passenger should get the acknowledgement of the receipt of payment and

should get the ticket for the reservation he/she made.

2. All the transactions of the system be easily accessible by the users.

Output:

Program -2

Draw an Activity Diagram for Online Book Store System

Aim: To draw an Activity diagram for Online Books Stores System using Star UML

Description:

Activity diagram is another important diagram in UML to describe the dynamic

aspects of the system. Activity diagram is basically a flowchart to represent the

flow from one activity to another activity. The activity can be described as an

operation of the system. The control flow is drawn from one operation to another.

This flow can be sequential, branched, or concurrent.

Activity diagrams deal with all type of flow control by using different elements such

as fork, join, etc.

Purpose of Activity Diagrams

The basic purposes of activity diagrams is similar to other four diagrams. It

captures the dynamic behaviour of the system. Other four diagrams are used to

show the message flow from one object to another but activity diagram is used to

show message flow from one activity to another.

Activity is a particular operation of the system. Activity diagrams are not only used

for visualizing the dynamic nature of a system, but they are also used to construct

the executable system by using forward and reverse engineering techniques.

 Start Symbol Indicates the Starting point of the Activity

 End Symbol indicates end of the Process

 Fork is used when multiple activities are occurring at same time.

 Branch indicates that based on the condition which activity has to be

chosen.

 Join is used to combine all the parallel activities before transitioning into final

state.

When to use Activity Diagram?

The main reason to use activity diagrams is to

 Model the workflow behind the system being designed.

Activity Diagrams are also useful for:

(i) analyzing a use case by describing what actions need to take place

and when they should occur.

(ii) describing a complicated sequential algorithm.

 (iii) and modelling applications with parallel processes.

Output:

Program-3

Draw a Class Diagram for Library Management System using STAR ULM

Aim: To draw a Class Diagram for Library Management System using STAR UML

Description:

Class diagrams are widely used to describe the types of objects in a system and

their relationships. Class diagrams model class structure and contents using design

elements such as classes, packages and objects.

Classes are composed of three things: a name, attributes, and operations.
Below is an example of a class:

Class diagrams also display relationships such as containment, inheritance,
associations Generalization etc.

Below is an example of an associative relationship:

The class Order is associated with the class Customer. The multiplicity of the
association denotes the number of objects that can participate in the relationship.
Another common relationship in class diagrams is a generalization.

A generalization is used when two classes are similar, but have some differences.

Below is an example of an Generalization relationship:

Classes Corporate Customer and Personal Customer have some similarities such
as name and address, but each class has some of its own attributes and operations.

The class Customer is a general form of both the Corporate Customer and Personal
Customer classes.

This allows the designers to just use the Customer class for modules and do not
require in-depth representation of each type of customer.

When to Use: Class Diagrams

Class diagrams are used in nearly all Object Oriented software designs. Use them

to describe the Classes of the system and their relationships to each other.

Output:

Program-4

Draw a State Chart diagram for Railway Reservation System using STAR ULM

Aim: To draw a State Chart diagram for Railway Reservation System using
STAR UML.

Description:

 A State-chart diagram describes a state machine.

 A State machine can be defined as a machine which defines different states
of an object and these states are controlled by external or internal events.

 Activity diagram is a special kind of a State-chart diagram. As State-chart
diagram defines the states, it is used to model the lifetime of an object.

 State-chart diagram describes the flow of control from one state to another
state.

 States are defined as a condition in which an object exists and it changes
when some event is triggered.

 The most important purpose of State-chart diagram is to model lifetime of

an object from creation to termination.

Following are the main purposes of using State-chart diagrams:
 To model the dynamic aspect of a system.
 To model the life time of a reactive system.
 To describe different states of an object during its life time.

 Define a state machine to model the states of an object.

Before drawing a State-chart diagram we should clarify the following points :

 Identify the important objects to be analysed.

 Identify the states.

 Identify the events.

Basic Elements on State Chart Diagram are :

1. Rounded Boxes representing the state of the objects.

2. Arrow indicating the Transition of Next State.

 All state diagrams being with an initial state of the object. This is the state of
the object when it is created. After the initial state the object begins
changing states.

 Conditions based on the activities can determine what the next state the
object transitions to.

Output

Program-5

Draw a Zero & First Level Data flow Diagram’s for Bank Loan System

Aim: To draw Zero & First Level DFD’s for Bank Loan Process

Description:

The Data Flow Model depicts the information flow and the transforms that are

applied on the data as it moves from input to output.

The symbols that are used in Data Flow Diagrams are:

Guidelines to Design DFD’s:

1. Level Zero DFD should depict the system as a single Bubble.

2. Primary Input & Primary Output should be carefully identified.

3. All the Bubbles (Processes) should be appropriately named.

4. One Bubble at a time should be refined.

5. Information flow continuity must be maintained from level to level.

Outputs:

1. 0 Level DFD

2. 1’st Level DFD

Program-6

Write the Test Cases for Login & Book Entry Form in Library Management

System?

Aim: To write the Test Cases for Login & Book Entry Form in Library management
System.

Description:

What is the Test Case?

A Test Case is a set of actions executed to verify a particular feature or

functionality of your software application. The Test Case has a set test data,

precondition, certain expected and actual results developed for specific test

scenario to verify any requirement.

A test case includes specific variables or conditions, using which a test engineer

can determine as to whether a software product is functioning as per the

requirements of the client or the customer.

Why do we write Test Cases?

Here, are some important reasons to create a Test Case-

 Test cases help to verify conformance to applicable standards, guidelines

and customer requirements.

 Helps you to validate expectations and customer requirements.

 Increased control, logic, and data flow coverage.

 You can simulate 'real' end user scenarios.

 Exposes errors or defects.

 When test cases are written for test execution, the test engineer's work will

be organized better and simplified.

Example:-Test cases for the Test Scenario: "Check the Login Functionality" would

be

1. Check system behaviour when valid email id and Valid password is entered.

2. Check system behaviour when invalid email id and valid password is

entered.

3. Check system behaviour when valid email id and invalid password is

entered.

4. Check system behaviour when invalid email id and invalid password is

entered.

5. Check system behaviour when email id and password are left blank and

Sign in entered.

6. Check Forgot your password is working as expected

7. Check system behaviour when valid/invalid phone number and password is

entered.

8. Check system behaviour when "Keep me signed" is checked.

LOGIN FORM:

Test Cases for Library Management System

SL.No Test Case Excepted Result Test Result

1.

Enter valid user name and
password & click on login
button.

System should display main
Window

Pass

2.

Enter invalid name &
password & click on Login
Button.

System should display an error
message and should not
display Main window.

Pass

BOOK ENTRY FORM:

SL. No Test Case Excepted Result Test Result

1.

On the click of ADD

At first user have to fill all
fields with proper data , if any
Error like entering the Text
data instead of numbers or
entering numbers instead of
Text is found then give proper
error message, otherwise Add
Record to the Database.

Successful

2.

On the Click of Delete
Button

This Deletes the details of the
book using Access number.

Successful

3.

On Click of Update Button

Modified Records are Updated
in Database

Successful

4.

On Clicking Search Button

Display the details of the Books
entered along with Access
Number. Otherwise Display a
proper error message

Successful

5.

On Clicking Clear Button

Clear all the field’s in the Form

Successful

6.

On Clicking EXIT Button

Exit From Current Book Details
Form

Successful

7.

On Clicking NEXT Button

Display corresponding Next
Form

Successful

Program-7

Write the Test Scenarios for Hospital Application System.

Aim: To write Test Scenarios fro Hospital Application System

Description:

What is a Test Scenario?

A Test Scenario is defined as any functionality that can be tested. It is a collective

set of test cases which helps the testing team to determine the positive and

negative characteristics of the project.

Test Scenario gives a high-level idea of what we need to test.

Why do we write Test Scenario?

Here, are important reasons to create a Test Scenario:

 The main reason to write a test scenario is to verify the complete

functionality of the software application

 It also helps you to ensure that the business processes and flows are as per

the functional requirements

 Test Scenarios can be approved by various stakeholders like Business

Analyst, Developers, Customers to ensure the Application Under Test is

thoroughly tested. It ensures that the software is working for the most

common use cases.

 They serve as a quick tool to determine the testing work effort and

accordingly create a proposal for the client or organize the workforce.

 They help determine the most critical end-to-end transactions or the real

use of the software applications.

 Once these Test Scenarios are finalized, test cases can be easily derived from

the Test Scenarios.

Example of Test Scenario

For an E-Commerce Application, a few test scenarios would be:

Test Scenario 1: Check the Search Functionality.

Test Scenario 2: Check the Payments Functionality.

Test Scenario 3: Check the Login Functionality

Test Scenarios For HOSPITAL APPLICATION SYSTEM

Name of the Scenario Add Patient Entry

Description This function get details of a patient and add record to

the patient file and generate a patient registration

number

Actors Data Entry Operator, Receptionist

Pre-Condition The operation must Login with their User Account

Main Flow of events 1. Use Selects “Add Patient Entry” at Home page.

2. Patient entry form is Displayed.

3.User enters the data to the required fields

4. Then User selects “Add Entry Button.”

5. If all the fields are properly entered then a

message is Displayed as “Record Added

Successfully.”

6. System now generates a Patient ID and display.

Extensions In 3(a) If any necessary field is left blank by the user

then prompt the user to enter all the required fields.

Post Condition Patient record has to be Added to Patient File

Name of the Scenario Issue Clinical Number to the Patient / User

Description This function assign number of Patients assigned to relevant

Channelling.

Actors Receptionist

Pre-Condition Patient must First Register through System

Main Flow of events

1. User Selects “Generate a Number “at OPD module

2. System prompts to select the clinical type.

3. If OPD generates next available number to the available

Doctor and display the number then

4. User confirms the Number and take a print of the

Ticket.

Extensions

In 3(a) if channelling a counsellor, system prompts the

counselling field and doctor.

3) b) user enter counselling field and doctor.

3) C system generates next available number or required

Counsellor.

Post Condition Patient channelling record should be updated with patient

details.

Name of the Scenario Add Prescription Entry

Description This function records patients prescription details

Actors Data entry operator/ Patient

Pre-Condition Doctor’s prescription chit must be issued.

Main Flow of events

1. User Selects the “Perception form” the Patient Module.

2. System Prompt’s to enter Patient Registration Number.

3. User enter system registration Number.

4. Prescription form displayed with relevant patient details.

5. User navigates to ‘tests’ field and selects prescribed test

Details.

6. User navigates to ‘Vaccine’ field and selects prescribed

Vaccine details.

7. User Navigates to ‘Medicine’ field and enters Medicine

details.

8. User enter Re-Consultation date and selects ‘ADD’ Button

and add Prescription details.

9. User Selects ‘PRINT’ Button and Prints the Prescription

details.

Name of the Scenario Patient Diagnosis History

Description This function adds patient’s diagnosis details into the System.

Actors Patient / Data Entry operator

Pre-Condition Patient must register to the System

Main Flow of events 1. User Selects Patient Diagnosis Card.

2. System prompts for Patient Id.

3. After entering User Id system display’s user details in the

Form.

 4. User now enters the Diagnosis details.

5. User Selects ‘Add Diagnosis record’ Button

Post Condition The Diagnosis Record must be added to the Diagnosis File.

Name of the Scenario Calculate Bill After Consultation

Description This Function Total Bill charges for the Patient after the

Consultation from the Doctor side is completed.

Actors Receptionist / Cashier

Pre-Condition The Receptionist / Cashier must Register to the System.

Main Flow of events 1. Cashier selects Patient Receipt card.

2. System Prompts to Enter Patient registration number.

3. After entering the Registration number by the cashier the

system prompts for date & Time for which the Bill has to be

Prepared.

5. After the Cashier enters Date & Time system displays patient

details, lab tests details, X-ray details, ECG details etc. and total

fee in number and in word.

6. Cashier Selects Print Receipt and prints the Bill.

7. The Patient Receipt is Printed Successfully.

Post Conditions Payment Details has to be Updated in Payment File.

Program-8

Prepare a Data Dictionary for Online Shopping Portal

Aim: To prepare a Data Dictionary for Online Shopping Portal.

Description:

DATA DICTIONARY

A data dictionary contains metadata i.e data about the database.

The data dictionary is very important as it contains information such as what is in

the database, who is allowed to access it, where is the database physically stored

etc.

The users of the database normally don't interact with the data dictionary; it is

only handled by the database administrators.

The data dictionary in general contains information about the following:

1. Names of all the database tables and their schemas.

2. Details about all the tables in the database, such as their owners, their
security constraints, when they were created etc.

3. Physical information about the tables such as where they are stored and
how.

4. Table constraints such as primary key attributes, foreign key information etc.

5. Information about the database views that is visible.

Different types of data dictionary are:

Active Data Dictionary

If the structure of the database or its specifications changes at any point of time, it
should be reflected in the data dictionary. This is the responsibility of the database
management system in which the data dictionary resides.

So, the data dictionary is automatically updated by the database management
system when any changes are made in the database. This is known as an active
data dictionary as it is self-updating.

Passive Data Dictionary

This is not as useful or easy to handle as an active data dictionary. A passive data
dictionary is maintained separately to the database whose contents are stored in
the dictionary. That means that if the database is modified the database dictionary
is not automatically updated as in the case of Active Data Dictionary.

So, the passive data dictionary has to be manually updated to match the database.
This needs careful handling or else the database and data dictionary are out of
synchronization.

Data Dictionary For Online Stores(Shopping Portal)

Table1: - User Description:

This table store information of User like Name, Address, Contact No, and Email Address. Each

User has associated reference in user which stores products belongs to User Product

Information belong to User, Products which stores Product Information belonging to User.

Field Name Data Type Description Allow Null

vcID Varchar(50) User Name Primary key

vcPass Varchar(20) Password Not Null

vcFsNm Varchar(50) First Name Not Null

vcLsNm Varchar(50) Last Name Not Null

vcGender Varchar(6) Gender Not Null

vcAdd Varchar(50) Address Not Null

vcCity Varchar(50) City Not Null

vcState Varchar(50) State Not Null

vcZipCode Varchar(10) Zip Code Not Null

vcCnctNo Varchar(20) Contact No Not Null

vcEmailId Varchar(50) Email ID Not Null

vcConPass Varchar(20) Conform Password Not Null

Table2: - Category:

This Table stores Information about Category of each Use

Field Name Data Type Description Allow Null

nmCtgryID Numeric(3,0) Category ID Primary key

vcNm Varchar(50) Category Name Not Null

txtDes Text Description Not Null

Table3: - Product:

This Table stores Information about Product of each User

Field Name Data Type Description Allow Null

nmID Numeric(4,0) Product ID Primary key

vcNm Varchar(50) Product Name Not Null

txtDes Text Description Not Null

nmPrice Numeric(18,0) Price Not Null

nmQuan Numeric(18,0) Quantity Not Null

nmDis Numeric(18,0) Discount Not Null

Image Image Product image Not Null

nmCtgryID Numeric(3,0) Category ID Foreign key

Table4: - Shopping Chart:

This Table Stores Information about Shopping Chart

Field Name Data Type Description Allow Null

nmID Numeric(4,0) Product ID primary key

vcNm Varchar(50) Product Name Not Null

nmQuan Numeric(18,0) Quantity Not Null

Table5: - Admin Table

This Table stores Information about Admin

Field Name Data Type Description Allow Null

vcID Varchar(50) Admin ID Primary key

vcPass Varchar(20) Admin Password Not Null

vcEmailID Varchar(50) Admin Email ID Not Null

Table6: - Order Details:

This Table stores Information about Order of each User

Field Name Data Type Description Allow Null

nmNo Numeric(4,0) Order No Primary key

nmID Numeric(4,0) Product ID Foreign key

nmQuan Numeric(18,0) Quantity Not Null

nmPrice Numeric(18,0) Order Price Not Null

nmAmt Numeric(18,0) Total Amount Not Null

9.Write a java program to demonstrate LINE DDA Algorithm.

Aim : To demonstrate the line DDA Algorithm.

Description: The Digital Differential Analyzer helps us to interpolate the variables on an interval from one point

to another point. We can use the digital Differential Analyzer algorithm to perform rasterization on polygons,

lines, and triangles.

Procedure:

It stands for digital differential analyzer

Algorithm:

Step 1 :if m<=1

∆x=1

y-values=?

m=∆y/∆x

∆y=y2-y1,∆ x=x2-x1

m=y2-y1|x2-x1

m=y2-y1|1

m=y2-y1

m=yk+1-yk

yk+1=m+yk ……(1)

Step 2 : if m>1

∆Y=1

x-values=?

m=∆y|∆x

m=1|∆x

∆x=1|m

Xk+1-xk = 1|m

Xk+1=1|m+xk ……..(2)

Step 3 : if m = ∆y|∆x <from –ve slope>

m =∆y|-1

m= -∆y

m=-(yk+1-yk)

m=-yk+1+yk

yk+1=yk-m…….(3)

Step 4 : Here ∆y=-1 then

m=∆y|∆x

m=-1|∆x

∆x=-1|m

Xk+1=xk-1|m……(4)

From eq 1 & 2 we can calculate the pixels for negative slope.

Digital Differential Analyzer (DDA) Algorithm

import java.io.*;

import java.awt.*;

import java.applet.*;

import java.util.*;

public class DDA extends Applet

{

public void paint(Graphics g)

{

 double dx,dy,steps,x,y,k;

 double xc,yc;

 double x1=200,y1=500,x2=600,y2=200;

 dx=x2-x1;

 dy=y2-y1;

 if(Math.abs(dx)>Math.abs(dy))

 steps=Math.abs(dx);

 else

 steps=Math.abs(dy);

 xc=(dx/steps);

 yc=(dy/steps);

 x=x1;

 y=y1;

 g.fillOval(200,500,5,5);

 for(k=1;k<=steps;k++)

 {

 x=x+xc;

 y=y+yc;

 g.fillOval((int)x,(int)y,5,5);

 }

}

}

DDA.html

<html>

<body>

<applet code="DDA.class" width="800" height="800">

</applet>

</body>

</html>

OUTPUT:-

10. Write a java program to demonstrate Bresenham’s Line Drawing Algorithm

Aim : To demonstrate the Bresenham’s Line Drawing Algorithm

Description: This algorithm is used for scan converting a line. It was developed by Bresenham. It is an efficient

method because it involves only integer addition, subtractions, and multiplication operations. These operations can

be performed very rapidly so lines can be generated quickly.

Procedure:

Algorithm:

Step 1 : Input the two lines end points and store the left end point is (x0,y0)

Step 2 : Load(x0,y0) into the frame Buffer i.e plotted the 1
st
 point

Step 3 : Calculate constants ∆x,∆y,2∆y and 2∆y -2∆x and obtain the starting values for the decision parameter as

p0 = 2∆y-∆x

Step 4 : At each xk along the line,starting at k=0.perform the following test if pn<0 the next point to plot is

(xk+1,yk) and pk+1= pk+2∆y-2∆x

Step 5 : Repeat step 4 ‘∆x’ times

Bresenham's Line Algorithm

import java.io.*;

import java.applet.*;

import java.util.*;

import java.awt.*;

public class Bre1 extends Applet

{

public void paint(Graphics g)

{

int x,y,k;

double dx,dy,p;

int x1=200,y1=300,x2=600,y2=400;

dx=Math.abs(x2-x1);

dy=Math.abs(y2-y1);

x=x1;

y=y1;

p=2*dy-dx;

g.fillOval(200,300,5,5);

for(k=0;k<dx;k++)

{

if(p<0)

{

g.fillOval(x++,y,5,5);

p=p+(2*dy);

}

else

{

g.fillOval(x++,y++,5,5);

p=p+(2*(dy-dx));

}

}

}

}

/*<applet code="Bre1.class" width="800" height="800">

 </applet>*/

OUTPUT:-

11. Write a java program to demonstrate MIDPOINT CIRCLE

Aim:To demonstrate the mid point circle algorithm

Description: The mid-point circle drawing algorithm is an algorithm used to determine the points needed for

rasterizing a circle.

Procedure:

Algorithm:

Step1:Input radius ‘r’ and circle center(xc,yc)and obtain the 1
st
 point on the circumference of the circle centered on

the origin as

(x0,y0)=(0,r)

Step2: Calculate the initial value of the decision parameter as

P0=5/4-r

Step3:At each xk position,starting at k=0,perform the following test if pk<0 then next point along the circle

centered on (0,0) is (xk+1,yk) and pk+1=pk+2 yk+1+1 otherwise the next point along the circle is (xk+1,yk-1) and

pk+1=pk+2 xk+1+1-2yk+1

Where 2xk+1=2xk+2 and

2yk+1=2yk-2

Step4:Determine symmetry points in the other seven octants

Step5:Move each calculated pixel position (x,y) on to the circular path centered at (xc,yc) and plot the coordinate

values

X=x+xc

Y=y+yc

Step6=Repeat step3 through steps until x>=y

MID POINT CLRCLE ALGORITHM

import java.io.*;

import java.util.*;

import java.math.*;

import java.applet.*;

import java.awt.*;

public class MidptCircle extends Applet

{

 public void paint(Graphics g)

 {

 int r=150;

 int d=(5/4)*r;

 int x=0;

 int y=r;

 do

 {

 g.setColor(Color.red);

 g.drawLine(y+200,x+200,y+200,x+200);

 g.drawLine(x+200,y+200,x+200,y+200);

 g.drawLine(x+200,-y+200,x+200,-y+200);

 g.drawLine(y+200,-x+200,y+200,-x+200);

 g.drawLine(-y+200,-x+200,-y+200,-x+200);

 g.drawLine(-x+200,-y+200,-x+200,-y+200);

 g.drawLine(-x+200,y+200,-x+200,y+200);

 g.drawLine(-y+200,x+200,-y+200,x+200);

 if(d<0)

{

 d=d+2*x+3;

}

 else

{

 d=d+2*(x-y)+5;

 y=y-1;

}

 x=x+1;

}

while(x<y);

}

}

midpoint.html

<html>

<body>

<applet code="MidptCircle.class" width="400" height="400">

</applet>

</body>

</html>

OUTPUT:

x ,r y

12. Write a java program to demonstrate Ellipse

Aim:To demonstrate a Ellipse algorithm

Description: Midpoint ellipse algorithm plots(finds) points of an ellipse on the first quadrant by dividing the

quadrant into two regions.

Each point(x, y) is then projected into other three quadrants (-x, y), (x, -y), (-x, -y) i.e. it uses 4-way symmetry.

Procedure:

STEP1:IN put r
1

1
 and ellipse center (x0,y0) and obtain the 1

st
 point on an ellipse centered on the origin1 as

(x0,y0)=(0,ry)

STEP2a:calculate the initial value of the decision parameter e in region 1 as P
1
0=r

2
y-

r
2
xry+1/4r

2
x

STEP3:At each xk, position in region 1,Starting at K=0,Perform the following test , if Pk,<0,the next point along the ellipse

P
1
=P

1
k+2r

2
yXk+1+r

2
 with

2r
2
yXk+1=2r

2
yXk+2r

2
y,

2r
2
yk+1=2r

2
y

k
-2r

2
x and continuous until 2r

2
y

x
>

2r
2
xy

STEP4:Calculate the initial value of the decision parameter in region 2 using the point (X0,Y0) calculate in region1

P0
2

=r
2
y(x0+y0)+r

2
x(y0-0

2
-r

2
xr

2
y)

STEP5:At each yk pos ition in region 2,Starting at k=0 perform the following test if p2k>0,the next point along the ellipse

centered on(0,0)is (Xk,yk-1) and

P2k+1=P2k-2r
2

xyk+1+r
2

k

Otherwise,the next point along the circle is (xk+1,yk+1)and

p2k+1=p2k+2r
2
yxk+1-2r

2
xyk+1+r

2
x

Using the same incremental calculate for x and y as in region1

STEP6:Determine Symmetry point in the other three quadrants

STEP7:More each calculate pixel position (x,y) onto the elliptical path centered on (x0,y0) and plot the coordinate values

X=x+xc,y=y+yc

STEP8:Repeated the steps for region 1 until 2x
2
yx>2r

2
x

Ellipse

import java.applet.Applet;

import java.awt.Color;

import java.awt.Graphics;

import java.awt.event.*;

 public class Ellipse extends Applet implements MouseListener

{

int width=500;

int height=500;

int pushX=400,pushY=200;

public void init()

{

resize(width,height);

addMouseListener(this);

}

public void putPixel(Graphics g,int x0,int y0)

{

g.drawLine(x0,y0,x0,y0);

}

public void ellipse(Graphics g,int CX,int CY,int XRadius, int YRadius)

{

int x,y;

int XChange,YChange,EllipseError,TwoASquare,TwoBSquare,StoppingX,StoppingY;

TwoASquare=2*XRadius*XRadius;

TwoBSquare=2*YRadius*YRadius;

x=XRadius;

y=0;

XChange=YRadius*YRadius*(1-2*XRadius);

YChange=XRadius*XRadius;

EllipseError=0;

StoppingX=TwoBSquare*XRadius;

StoppingY=0;

while(StoppingX>=StoppingY)

{

plot4EllipsePoints(g,CX,CY,x,y);

y++;

StoppingY+=TwoASquare;

EllipseError+=YChange;

YChange+=TwoASquare;

if((2*EllipseError+XChange)>0)

{

x--;

StoppingX-=TwoBSquare;

EllipseError+=XChange;

XChange+=TwoBSquare;

}

}

x=0;

y=YRadius;

XChange=YRadius*YRadius;

YChange=XRadius*XRadius*(1-2*YRadius);

EllipseError=0;

StoppingY=TwoASquare*YRadius;

StoppingX=0;

while(StoppingX<=StoppingY)

{

plot4EllipsePoints(g,CX,CY,x,y);

x++;

StoppingX+=TwoBSquare;

EllipseError+=XChange;

XChange+=TwoBSquare;

if((2*EllipseError+YChange)>0)

{

y--;

StoppingY-=TwoASquare;

EllipseError+=YChange;

YChange+=TwoASquare;

}

}

}

public void plot4EllipsePoints(Graphics g,int CX,int CY,int x,int y)

{

putPixel(g,CX+x,CY+y);

putPixel(g,CX-x,CY+y);

putPixel(g,CX-x,CY-y);

putPixel(g,CX+x,CY-y);

}

public void paint(Graphics g)

{

g.setColor(Color.gray);

g.drawLine(0,height/2,width,height/2);

g.drawLine(width/2,0,width/2,height);

g.drawString("X",width/2+5,10);

g.drawString("Y",width-15,height/2+12);

g.drawString("0",width/2+5,height/2+12);

g.drawLine(width/2,height/2,pushX,pushY);

g.setColor(Color.red);

g.drawLine(width/2,pushY,pushX,pushY);

g.drawLine(pushX,height/2,pushX,pushY);

g.drawString("r1",width/2-(width/2-pushX)/2,(pushY<height/2?pushY-6:pushY+12));

g.drawString("r2",(pushX<width/2?pushX-12:pushX+6),height/2-(height/2-pushY)/2);

g.drawString("r1"+Math.abs(width/2-pushX)+"px",10,10);

g.drawString("r2"+Math.abs(height/2-pushY)+"px",10,10);

g.setColor(Color.blue);

ellipse(g,width/2,height/2,Math.abs(width/2-pushX),Math.abs(height/2-pushY));

}

public void mouseClicked(MouseEvent e)

{

pushX=e.getX();

pushY=e.getY();

repaint();

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

}

/*<applet code='Ellipse.class' width=800 height=1000></applet>*/

Output:

13. Write a java program to demonstrate Cohen Sutherland

Aim:To demonstrate the cohen-sutherland line clipping diagrams.

Description: The Cohen–Sutherland algorithm is a computer-graphics algorithm used for line clipping. The

algorithm divides a two-dimensional space into 9 regions and then efficiently determines the lines and portions

of lines that are visible in the central region of interest (the viewport).

Procedure:

 It speeds up the processing of line segments by performing initial tests that reduce the number of

intersections that must be calculated.

 Every line endpoint in a picture is assigned a four digit binary code called a region code that

identifies the location of the point relative to the boundaries of the clipping rectangle

1001 1000 1010

0001 0000 0010

0101 0100 0110

 Each bit position in region code is used to indicate one of four relative coordinate positions of points

with respect to clip window:to the left,right,top or bottom.

 By numbering the bit positions in the region code as 1 through 4 from right to left, the coordinate

regions are corrected with bit position as

Bit 1: left

Bit 2: right

Bit 3: below

Bit 4: above

 A value of 1 in array bit position indicates that the point is in that relative position.

 Otherwise the bit position is set to 0.If a point is within the clipping rectangle the region code is 0000.

 A point i.e below and to the left of the rectangle has a region code of 0101.

 Bit values in the region code are determined by comparing endpoint coordinate values(x,y) to clip

boundaries. Bit 1 is set to 1 if x<xwmin

 For programming language which bit manipulation is possible region-code bit values can be

determined with following two steps.

 Calculate differences between endpoint coordinates and clipping boundaries.

 Use the resultant sign bit of each difference calculation to set the corresponding value in the region

code.

Bit 1 is the sign bit of x-xwmin

Bit 2 is the sign bit of xwmax-x

Bit 3 is the sign bit of y-ywmin

Bit 4 is the sign bit of ywmax-y

 Once we have established region codes for all line endpoints,we can quickly determine which lines

are completely inside the clip window and which are clearly outside.

 Any lines that are completely contained within the window boundaries have a region code of 0000 for

both endpoints,and we accept these lines.

 Any lines that have a 1 in the same bit position in the region codes for each endpoint are completely

outside the clipping rectangle and we reject these lines.

Cohen-Sutherland

import java.applet.*;

import java.awt.*;

import java.util.*;

public class CohenSutherland extends Applet

{

 int xmax=90,ymax=80,xmin=40,ymin=40;

 public int[] set(int x,int y)

 {

 int a[]=new int[4];

 if(x<xmin)

 a[3]=1;

 else

 a[3]=0;

 if(x>xmax)

 a[2]=1;

 else

 a[2]=0;

 if(y<ymin)

 a[0]=1;

 else

 a[0]=0;

 if(y>ymax)

 a[1]=1;

 else

 a[1]=0;

 return a;

 }

 boolean check(int a[])

 {

 for(int i=0;i<a.length;i++)

 if(a[i]==1)

 return false;

 return true;

 }

 int[] produceXY(int i,int x1,int y1,float m)

 {

 int a[]=new int[2];

 float x=0,y=0;

 switch(i)

 {

 case 0:

 x=xmin;

 y=y1+m*(x-x1);

 break;

 case 1:

 x=xmax;

 y=y1+m*(x-x1);

 break;

 case 3:

 y=ymin;

 x=x1+(y-y1)/m;

 break;

 case 2:

 y=ymax;

 x=x1+(y-y1)/m;

 break;

 }

 a[0]=(int)x;

 a[1]=(int)y;

 return a;

 }

 boolean doAnd(int a[],int b[])

 {

 for(int i=0;i<a.length;i++)

 {

 int k=a[i]&b[i];

 if(k==1)

 return false;

 }

 return true;

 }

 public void paint(Graphics g)

 {

 g.drawRect(xmin,ymin,xmax-xmin,ymax-ymin);

 g.drawRect(xmin+100,ymin,xmax-xmin,ymax-ymin);

 int a[][]=new int[2][4];

 int b[][]=new int[2][4];

 int c[]=new int[2];

 int c1=20;

 int x1=45,y1=45,x2=20,y2=90;

 float m=(y2-y1)*1.0f/(x2-x1);

 //g.drawString(m+" ",100,100);

 g.drawLine(x1,y1,x2,y2);

 a[0]=set(x1,y1);

 a[1]=set(x2,y2);

 //g.drawString(Arrays.toString(a[0]), 300, 300);

 //g.drawString(Arrays.toString(a[1]),400,400);

 if(check(a[0])&&check(a[1]))

 {

 g.drawLine(x1, y1, x2, y2);

 }

 else

 {

 if(doAnd(a[0],a[1]))

 {

 for(int i=a[0].length-1;i>=0;i--)

 {

 if(a[0][i]==1)

 {

 c=produceXY(a[0].length-1-i,x1,y1,m);

 b[0]=set(c[0],c[1]);

 g.drawString("first"+Arrays.toString(b[0]),200,300+c1);

 if(check(b[0]))

 {

 x1=c[0];

 y1=c[1];

 break;

 }

 c1+=20;

 }

 }

 for(int i=a[0].length-1;i>=0;i--)

 {

 if(a[1][i]==1)

 {

 c=produceXY(a[0].length-1-i,x1,y1,m);

 b[1]=set(c[0],c[1]);

 //g.drawString("second"+Arrays.toString(b[1]),200,300+c1);

 if (check(b[1]))

 {

 x2=c[0];

 y2=c[1];

 break;

 }

 //c1+=20;

 }

 }

 g.drawLine(x1+100,y1,x2+100,y2);

 }

 }

 } }

/*<applet code="CohenSutherland.class" width=500 height=500> </applet>*/

OUTPUT

14. Write a java program to demonstrate Scaling

Aim: To demonstrate scaling transformation diagrams.

Descripition: It is used to alter or change the size of objects. The change is done using scaling factors. There are

two scaling factors, i.e. Sx in x direction Sy in y-direction. If the original position is x and y. Scaling factors are

Sx and Sy then the value of coordinates after scaling will be x
1
 and y1.

Procedure:

 A scaling transformation alters the size of an object.

 This operation can be carried out for polygons by multiplying the coordinate values(x,y) to

each vertex by scaling factor sx& sy to produce the transformed coordinates(x
1
,y

1
)

 X
1
=x.sx , y

1
=y.sy ->eq(1)

 Scaling factor sx scales object in x-direction while sy scales in y-direction.

 The transformation equation in matrix form

=

 or
p

1
=s.p

Where s is 2 by 2 scaling matrix

 The figure shows the tuming a square into a rectangle with scaling factor.

Sx=2 and sy=1

Any positive numeric values are valid for scaling factors sx and sy

 Values less than one reduce the size of the objects and values greater than 1 produce an enlarged

objects.

 There are two types of scaling.They are

 Uniform scaling – sx and sy have same values

 Non-uniform scaling – sx and sy have different value.

Scaling

import java.awt.*;

import java.applet.*;

import java.math.*;

public class Scale extends Applet

{

public void paint(Graphics g)

{

 g.drawLine(100,150,100,250);

 g.drawLine(100,150,250,250);

 g.drawLine(100,250,250,250);

 int a[][]=new int[3][3];

 int b[][]=new int[3][3];

 int c[][]=new int[3][3];

 int i,j,k;

 a[0][0]=2;

 a[0][1]=0;

 a[0][2]=0;

 a[1][0]=0;

 a[1][1]=2;

 a[1][2]=0;

 a[2][0]=0;

 a[2][1]=0;

 a[2][2]=1;

 b[0][0]=100;

 b[0][1]=100;

 b[0][2]=250;

 b[1][0]=150;

 b[1][1]=250;

 b[1][2]=250;

 b[2][0]=1;

 b[2][1]=1;

 b[2][2]=1;

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 {

 c[i][j]=0;

 for(k=0;k<3;k++)

 {

 c[i][j]=(c[i][j]+(a[i][k]*b[k][j]));

 }

 System.out.println();

 }

 g.drawLine(c[0][0],c[1][0],c[0][1],c[1][1]);

 g.drawLine(c[0][1],c[1][1],c[0][2],c[1][2]);

 g.drawLine(c[0][0],c[1][0],c[0][2],c[1][2]);

 }

}

Output

 15. Write a java program to demonstrate Translation

tx

t

 Aim : To demonstrate the Translation diagrams Description

:

A translation is applied to an object by representing it a long a straight line path from one coordinate location to another

adding translation distances,tx, ty to original coordinate position(x,y) to move the point to a new position (x’,y’)

X’=x+tx , Y’=y+ty

The translation distance point (tx ,ty) is called translation vector or shift vector.

Translation equation can be expressed as single matrix equation by using column vectors to represent the coordinate

position and the translation vector

as P=(X,Y) T=(tx ,ty)

X’=X+tx , Y’=Y+ty

x

= y + y

P’= P+T

Procedure:

1.Point Translation P(X, Y) : Here we only translate the x and y coordinates of given point as per given

translation factor dx and dy respectively.

2.Line Translation: The idea to translate a line is to translate both of the end points of the line by
the given translation factor(dx, dy) and then draw a new line with inbuilt graphics function.
3.Rectangle Translation : Here we translate the x and y coordinates of both given points A(top left
) and B(bottom right) as per given translation factor dx and dy respect ively and then draw a
rectangle with inbuilt graphics function

Translation

package chinni;

import java.math.*;

X’

Y’

import java.awt.*;

import java.applet.*;

public class Trans extends Applet

{

 public void paint(Graphics g)

 {

 g.drawLine(100,150,100,250);

 g.drawLine(100,150,250,250);

 g.drawLine(100,250,250,250);

 int a[][]=new int[3][3];

 int b[][]=new int[3][3];

 int c[][]=new int[3][3];

 int i,j,k;

 a[0][0]=1;

 a[0][1]=0;

 a[0][2]=100;

 a[1][0]=0;

 a[1][1]=1;

 a[1][2]=100;

 a[2][0]=0;

 a[2][1]=0;

 a[2][2]=1;

 b[0][0]=100;

 b[0][1]=100;

 b[0][2]=250;

 b[1][0]=150;

 b[1][1]=250;

 b[1][2]=250;

 b[2][0]=1;

 b[2][1]=1;

 b[2][2]=1;

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 {

 c[i][j]=0;

 for(k=0;k<3;k++)

 {

 c[i][j]=(c[i][j]+(a[i][k]*b[k][j]));

 }

 System.out.println();

 }

 g.drawLine(c[0][0],c[1][0],c[0][1],c[1][1]);

 g.drawLine(c[0][1],c[1][1],c[0][2],c[1][2]);

 g.drawLine(c[0][0],c[1][0],c[0][2],c[1][2]);

}

}

output

