Introduction to
Software Engineering

—

1.1 Introduction

Today, SOﬂiWare engineering is the mogt important technology with rapid
development. Nationa] cconomy s also dependant on this technology. Day by day
more and more svstems are getting controlled by software. Hence it beéonwe‘s
necessary tOl understand the software development as an engineering discipline. This
chapter is for understanding fundamental concepts. We will get introduced with
software engineering by understanding what exactly mean by software, what are the
objectives of software engineering. In this chapter, we will also discuss various
Categories of software. Finally we will discuss various challenges in software
engineering. .

1.2 Evolving Role of Software

The evolving role of software means changing role of software, Basmally any

software appears in two roles -

Software as a Product

Software as a Process

Fig. 1.1

Being a product the role of software can be recognised by its computing potentials,

hardware capabilities and accessibility of network computers by the local hardware.

Being a product it also acts as an information transformer 1.¢. producing, managing,

moditying and conveying the source ot information

Being a process the software acts as a vehicle for driving the product. In this role

the duty of sottware is to control the computer or to establish communications

between the computers

(1-1)

Software Engineering

1-2 Introduction to Software E“Qineering
— "9

The role of software is significantly changing over past decade. There are Many,

factors affecting the role of software and those are -

* Changes in computer architectures (Right from Pentium I to supercomputers)

* Improvement in hardware performance.

Vast increase in amount of memory

Wide variety of input and outputs(Ranging from simple text to multimedia
videos)

Following table presents the different roles of software in different era of

computing.

Early Years Batch processing
Custom software

Second Era Multi user Real time systems
Database systems
Product software

Third Era Distributed systems

Forth Era Object oriented systems
Expert systems

Parallel computing

Network computers

Fifth Era Web technologies
mobile computing

But this evolutionary role of software brings some crucial problems. Here are some
sample problems encountered due to evolution on software

1.
2.

Constant struggle for high reliability and quality software,

ftware Engineerin
B0 2 s 1-3 Introduction to Software Engineering

1.3 What is Software Engineering ?

Software engineering is a discipline in which theories, methods and tools are applied to

develop professional software.” e
L ?1 fteéeg,

In software engineering a systematic and organized approach is adopted. Based on

the r.latu.re of problem and development constraints various tools and techniques are
applied in order to develop quality software.

1.4 Software

SoftV\.rare is nothing but a collection of computer programs and related documents
that are intended to provide desired features, functionalities and better performance.

Software products may be
1. Generic - That means developed to be sold to a range of different customers.

2. Custom - That means developed for a single customer according to their
specification.

1.4.1 Software Characteristics

Software development is a logical activity and therefore it is important to
understand basic characteristics of software. Some important characteristics of software

are
e Software is engineered, not manufactured

Software development and hardware development are two different activities. A
good design is a backbone for both the activities. Quality problems that occur in
hardware manufacturing phase can not be removed easily. On the other hand, during
software development process such problems can be rectified. In"both the activities,

developers are responsible for producing qualitative product.

e Software does not ware out

In early stage of hardware development process the failure rate is very high
because of manufacturing defects. But after correcting such defects the failure rate gets
reduced. The failure rate remains constant for some period of time and again it starts
increasing because of environmental maladies (extreme temperature, dusts, and

vibrations).

On the other hand software does get affected from such environmental maladies.
Hence ideally it should have an “idealized curve”. But due to some undiscovered errors
the failure rate is high and drops down as soon as the errors get corrected. Hence 1n

failure rating of software the “actual curve” is as shown below.

Software Engineering 1-4 Introduction to Software E"QiNGerin

Side effect
of changes
Manufacturing
defects
o 2)
o L o
o o \c?
3 > i
g Wear g YC?
out
L n Change Idealized curve

Time Time

Fig. 1.2 Failure curves for Hardware and Software
During the life of software if any change
introduced. This causes failure rate to be high. Befo

steady state another change is requested and again t
the failure curve looks Iike a s
deteriorate.

is made, some defects may get
re the curve can return to original

he failure rate becomes high. Thus
pike. Thus frequent changes in software cause it to

Another issue with software is that there are no spare parts for software. If hardware

component wears out it can be replaced by another component but it is not possible in
case of software. Therefore software maintenance is more difficult than the hardware
maintenance.

® Most software is custom built rather than being assembled from components

While developing any hardware product at first the circuit design with desired
functioning properties is created. Then required

Capacitors, and registers are assembled accordin
while developing software product. Most of the s

hardware components such as ICs,
g to the design, but this is not done
oftware is custom built.

However, now the software development appro

ach is getting changed and we look
for reusability of software components. It is pr

acticed to reuse algorithms and data
structures. Today software industry is trying to make library of reusable components.

For example: in today’s software, GUI is built using the reusable components such as
message windows, pull down menus and many more such components. The approach

is getting developed to use in-built components in the software. This stream of
software is popularly known as component engineering.

1.4.2 Changing Nature of Software

Software can be applied in a situation for w
steps (algorithm) exists. Based on a complex
into following categories.

hich a predefined set of procedural
growth of software it can be classified

NS T

e

e A S S
D ak s A SO et i

b o A

A R Ko 5 i TR PR TR 08 8 b &

Software Engineering

=0T 1-5 Introduction to Software Engineering

e System software - i .

programs. Typical PI:ogliar:\(;H?Chon of programs written to service other
in thi . .

assemblers. The purpose of this category are compiler, editors, and

. the ; X
communication with the hardware ysiem software is to establish a

o Application software
for specific business
systems.

- It ;:onsis.ts of standalone programs that are developed
need. This software may be supported by database

» Engineering/scientific software - This
programs from astronomy to volcanol
space shuttle orbital dynamics, and
manufacturing. This software is based

software category has a wide range of
ogy, from automative stress analysis to
from molecular biology to automated
on complex numeric computations.

Er'nb'edded software - This category consists of program that can reside
within a product or system. Such software can be used to implement and
.control features and functions for the end-user and for the system itself.

* Web applications - Web application software consists of various web pages
that can be retrieved by a browser. The web pages can be developed using
programming languages like JAVA, PERL, CGI, HTML, DHTML.

e Artificial Intelligence software - This kind of software is based on
knowledge based expert systems. Typically, this software is useful in
robotics, expert systems, image and voice recognition, artificial neural
networks, theorem proving and game playing.

1.4.3 Software Myths

There are some misbelieves in the software industry about the software and
process of building software. For any software developer it is a must to know such
beliefs and reality about them. Here are some typical myths-

¢ Myth : Using a collection of standards and procedures one can build

software.

Reality : Eventhough we have all standards and procedures with us for
helping the developer to build software, it is not possible for software
to build desired product. This is because — the collection which

professionals ' .
we have should be complete, it should reflect modern techniques and more
importantly it should be adaptable. It should also help the software

professional to bring quality in the product.

e Myth : Add more people to meet deadline of the project.

Reality : Adding more people in order to catch the schedule w
reverse effect on the software project ie. software project will

ill cause the
get delayed.

1-6 Introduction to Software E"Qineerin

Software Engineering

i ating people or informin
Because, we have to spend more time on educating peop 8 then,
about the project.

e Myth : If a project is outsourced to a third party then all the worrigg of
software building are over.

Reality : When a company needs to outsource the project then it simply
indicates that the company does not know how to manage the projects
Sometimes the outsourced projects require proper support for development.

e Myth : Even if the software requirements are changing continuously it is
possible to accommodate these changes in the software.

Reality : It is true that software is a flexible entity but if continuous changes
in the requirements have to be incorporated then there are chances of
introducing more and more errors in the software. Similarly the additional
resources and more design modifications may be demanded by the software.

* Myth : We can start writing the program by using general problem

statements only. Later on using problem description we can add up the
required functionalities in the program.

Reality : Tt is not possible each time to have comprehensive problem
statement. We have to start with general problem statements; however by
proper communication with customer the software professionals can gather

useful information. The most important thing is that the problem statement
should be unambiguous to begin with.

* Myth : Once the program is running then its over!

Reality : Even though we obtain that the
work is after delivering it to customer.

e Myth:

program is running major part of

Working program is the only work product for the software project.
Reality : The working program/software is the major component of any
software project but along with it there are many other elements that should
be present in the software project such as documentation of software,
guideline for software support.

* Myth : There is no need of docum

unnecessarily slows down the development
Reality : Documenting the software pro; i

Project helps in establishj in use

of software. It helps in Creating better ¢ e Lt

; . quality. Hence documentation is not
wastage of time but it is a must for any software project

enting the software project; it
process.

i

(i TN S Pl s s ST S

s i i

0. [feremnt

a
J

: g

~..

Y

Software Engineering .
— -7

1.5 Goals/Objectives of Software En
While developing software followin

1. Satisfy user requi
r
end user wantsqbec:ﬁlszn:;e- I:/ilany programmers simply don’t do what the
o .
Bédomes necessary to undeg’s not understand user requirements. Hence it

software should be developed. ' user and accordingly

Introduction to Software Engineering

gineering

g are common objectives.

2. High reliability - Mistakes
of human lives, money,

faced many problems bec
Thus software should be

or bugs in a program can be expensive in terms

and customer relation. For instance Microsoft has

ause earlier release of Windows has many problems.

- delivered only if high reliability is achieved.

3. Low maintenance costs - Maintenance of software is an activity that can be
done only after delivering the software to the customer. Any small change in

softwar.e should not cause restructuring of whole software. This indicates that
the design of software has poor quality.

4. Delivery on time - It is very difficult to predict the exact time on which the

software can be completed. But a systematic development of software can
lead to meet the given deadline.

5. Low production costs - The software product should be cost effective.

6. High performance - The high performance software are expected to achieve
optimization in speed and memory usage.

7. Ease of reuse - Use same software in different systems and software.

Environments reduce development costs and also improve the reliability. Hence
reusability of developed software is an important property.

1.6 Challengés in Software Engineering
The key challenges facing software engineering are :

e Coping with legacy systems
Old, valuable systems must be maintained and updated. Hardware is evolyed
fastt’er than software. If original developer have moved on managing,

maintaining or integrating of software becomes a critical issue.

g ® Heté_r(;geneity challenge
| _S;);neﬁmes systems are distributed and include a mix. of hardw§;e ::ui
software. This implies that software systems must cl(.eanl.y integrate with o i:
different software systems, built by different organizations and teams using

different hardware and software platforms.

Software Engineering

1-8 Introduction to Software Engingm g
e Delivery time challenge

There is increasing pressure for faster delivery of software. As the Complexity '
of systems that we develop increases, this challenge becomes harder,

As software is an integral part of computer based system§, it is essential t, appy _
software engineering principles and practices while developing s'oft.wa.re. Hence the
main objective of software engineering is to adopt systematic, disciplined approagy

while building high quality software.
—

Review Questions

1. What is software engineering ?
2. Define the term software.

3. Explain characteristics of software.

4. Give the evolving role of software.

5. Give the classification of software based on changing nature of software.
6. Explain five software myths.

7. What are the goals of software engineering.

8. What are the key challenges in software engineering.

Qaa

A Generic View of Software

2.1 Introduction

Software engineering includes process, management techniques, technical methods,
and the use of tool. While building any software, the software process provides the
interaction between user and developer. In this chapter we will understand the basic
concept of process and process models,

2.1.1 Layered Technology

e Software engineering is a layered technology. Any software can be developed
using these layered approaches. Various layers on which the technology is
based are quality focus layer, process layer, methods layer, tools layer.

Tools
Methods
Process

Quality focus

Fig. 2.1 Software engineering layers

A disciplined quality management is a backbone of software engineering

technology.
Process layer is a foundation of software engineering. Basically, process

defines the framework for timely delivery of software.
In method layer the actual method of implementation is carried out with the
help of requirement analysis, designing, coding tsing desired programming

constructs and testing.
Software tools are used to bring automation in software development

rocess.
P @-1)

Software Engineering —— — L A i

‘3
of process, methods, and tools for ff

Thus software engineering is 2 combination
development of quality software. ;

2.2 Software Process

Software process can be defined as the structu
develop the software systent. z

red set of activities that are requireq ;

The fundamental activities are
e Specification

e Design and implementation
e Validation

e Evolution
A software process model is an abstract representation of a process. It presents a

description of a process from some particular perspective.

2.2.1 Common Process Framework
The process framework is required for representing the common process activities.
It is as shown below.

Common process framework i

Umbrella activities

Framework activities

Milestones

SQA points

SQA points

Fig. 2.2 Software Process framework

goftware Engineering
/

2-3

A Generic View of Software Process

As shown in figure the software

process is chara
activities, task sets and umbrella actjyj

k cterized by process framework
ies.

process Framework Activities
¢ Communication

o By communicating customer requirement gathering is done.

e Planning - Establishes engineering work plan, describes technical risks, lists

resource requirements, work products produced, and defines work schedule.
¢ Modelling — The software model is prepared by:

» Analysis of requirements

e Design

* Construction — The software design is mapped into a code by:

e Code generation
e Testing

» Deployment — The software delivered for customer evaluation and feedback
is obtained.

Task sets — The task set defines the actual work done in order to achieve the
software objective. The. task set is used to adopt the framework activities and project
team requirements using

e Collection of software engineering work tasks
e Project milestones

o Software quality assurance points
Umbrella activities — The umbrella activities occur throughout the process. They
focus on project management, tracking and control. The umbrella activities are

1. Software project tracking and control — This is an activity in which software

team can assess progress and take corrective action to maintain schedule.

2. Risk management — The risks that may affect project outcomes or quality can

be analyzed.

3. Software quality assurance — These are activities required to maintain

software quality.
4. Formal technical reviews — It is required to assess engineering work products
to uncover and remove errors before they propagate to next activity.

5. Software configuration management - Managing of configuration process

when any change in the software occurs.

A Generic View of Software Proce

2-4

Software Engineering

I'Oduc pr i) -

. a

In this activity, the process can bf: defmedft nd collecteq §

8. Measuref“e:f _d groduct measures are used to assist the software tea, in
Also project an __

delivering the required software.

S L R R

2.2.2 Capability Maturity Model (CMM) e e

* The Software Engineering Institute (SEI) has 'deve e edicated on a set
process meta-mode. emphasizing process maturity. It is I;r I

of system and software e D o -

organizations reach different levels of process capability and matur 1ty.

* The Capability Maturity Model (CMM) is used in assessing how well an
plete and manage new software

organization’s processes allow to com
projects.

* Various process maturity levels are

Level 1 : Initial - Few processes are defined and individual efforts are taken.

Level 2 : Repeatable — T, track cost schedule and functionality basic project
management processes are established. Depending on earlier Successes of projects with
similar applications necessary process discipline can be repeated.

Level 4 ; Managed - Both the software process and product are quantitatively
understood and controlled using detajled measures.

Level 5 . Optimizing - Estaplish mechanisms to plan and implement change,
Innovative ideas and technologies can pe tested.

Thus CMM is used for improving the software project.

2.3 Process Patterns

acteristic of software Process. Using
quirements.

s

’

ftware Engineering

SO 2_5

S —————— e A Generic View of Software Process
Process pattern describes —

e Complete process
o Important framework activity
o Task within the framework activity

Scott Ambler — an object oriented

" - consultant has proposed a template for process
pattern

. Pattern name

e Intent

* Type

* Initial context

e Problem

e Solution

* Resulting context

e Known uses

The description of process pattern is as follows -

Pattern name

The pattern name should be a meaningful name given to the pattern. From pattern
name one can guess its functionality.
Intent

The objective or the purpose of the pattern should be described here.

Type |
The type of pattern should be specified here.

Ambler has suggested three types of patterns
1) Task Pattern - It represents the software engineering action or work task
which is a part of process. For example Formal Technical review is a task

pattern. B
2) Stage Pattern- It defines the process framework activity. A framework activity
has multiple work tasks; hence stage pattern consists of multiple task

patterns. For example Coding phase is a stage pattern.

A Generic View of Software Pro«:ess

2-6
Software Engineering

ivities. For ex
f framework activi ample |
. : fines the sequence o . .
3) t};.lntham:;sﬂeIt (?:fm be spiral model or rapid prototype model
e phrase m

Initial context) .
In this section the conditions under which the pattern applies are described.
n this sec

egins.
Sometimes the entry conditions must be true before the process beg

i i ing i described
In this section following issues need to
1. The set of organisational or team related activities that have already occurreq,

2. The list of entry state processed. '
i i i i on.
3. Already existing software engineering or project related informat

Problem
Under this section the problem is mentioned for which the pattern is to be

described. For example msufficient requirements is a problem. That means customers are i
not sure about what they want exactly. They could not specify the requirements in

Proper manner.

Solution

duct timely reviews to modify/redefine the

obtain meaningfy] requirements. Con
are developer to get useful information

solution wil] help the softw
before the actual work starts.

Resulting context
It describes the results after successful implementation of pattern. The resulting
context should have following type of information on successful completion of

pattern -

1. The team-related or organizational activities that must have occurred,

2. Exit state for the process.
3. The software engineering information Or project information that has been

developed.

Known uses/Examples

The specific instances or applications in which the described pattern is useful

should be mentioned under thjs section. In other words we describe applicability of
the pattern. For example spiral mode] is useful for the large scale projects in which

Software Engineering
2.7 A Generic View of Software Process

2.4 Process Assessment

Normally process is suffereq by following probl
ems —
1. The software has to be delivered on time.

2. The softwar :
@ should satisfy customer needs and requirements.

3. The softw
are should posses the long term quality characteristics.

Software process
/ A I \
Byt . nalysed by

Y Improving the i Capabilities and

process changes :
it risk of processes
n it can be made Software process can be identified

/ assessment
/ \
Leads to \
e Leads to

Software process = li
) Hafbsi Capability
improvement pE.in determination

Fig. 2.3 Software process assessment

Process assessment is an activity in which it is ensured whether the software meets the
basic criteria for successful software engineering project.

Following approaches are used for software assessment —

Standard CMMI assessment method for process improvement

It is a five step process assessment model. These five steps are initiating,
diagnosing, establishing, acting and learning. This model makes use of SEI CMM as

the base model.
CMM-based appraisal for internal process improvement

This method provides the diagnostic technique for internal process assessment.

SPICE

Using this standar
assessment. This standa

d all the requirements are analysed for software process
rd helps in doing an objective evaluation on efficiency of any

pr ocess.

ISO 9001:2000

This is a popularly used standard fo
e International Organization

r improving the overall quality of the
for Standardization i.e. ISO has developed

organization. Th
this standard.

Software Engineering

2.5 Personal and Term Process Models

Watts Humphrey developed PSP and TSP at the SEI at Carnegie Mellon in the

mid-1990’s.

The Personal Software Process (PSP) is a SEI (Software Engirlleering' In'Sti.tUte)
technology that brings discipline to the software development ha.lblts' of m‘_leldual
software éngineer. It helps in dramatically improving prodqu quality, increasing cog
and schedule predictability, and reducing development cycle time for software.

The Team Software Process (ISP) is a complementary SEI technology that enab]eg
teams to develop software products more effectively. TSP helps a team of engineers
how to produce quality products for planned costs and on aggressive schedules. PSp
is like applying Six Sigma to Software Development.

Let us understand them in detail.

2.5.1 Personal Software Process (PSP)

The computer software is built using various processes developed by every
individual. There are different kinds of software processes; random, intended for
specific purpose or may be changing each time. These processes are developed by
individuals in -an organization. Watts Humphrey suggested that to make each process
effective every individual who is developing them has to change themselves first.
Under PSP every practitioner is made responsible for controlling the quality of
corresponding processes. Under PSP model five framework activities are suggested as
follows —

Planning H('jgehsf;e' Review Development =1 Postmortem
Fig. 2.4 Framework activities in PSP
Planning

High level design

The specification is created first and then cOmponent level des;i
resolve the uncertainty prototypes are Created.

Review

Formal technical reviews are made for uncovering the errors, Metrics are formed
for important tasks and recorded.

2.8 A Generic View of Software P'°°es; :

.

E:

*
=1

3
3

Software Engineering
2-9 A Generic View of Software Process

Development

7

Postmortem

Using the collected measures an
analysed. These measures and metrics
order to improve its efficiency.

d metrics the effectiveness of the process is
should direct certain changes in the process in

Thus the emphasis of PSP is to identify errors in the early stage of software

development. Using the Systematic approach of PSP every work product is assessed
with great care.

2.5.2 Term Process Models (TSP)

The term process model (TSP) is designed to produce strategy and set of
operational procedures for using disciplined software methods at team levels. The
goal of TSP is to have self directed project team for producing high quality software.
Following are the objectives of Term Process models.

1. Build the self directed team for planning the software project in systematic
manner. The normal size of team should be 3 to 20 software engineers.

2. Indicate the project manager for the coaching needed by the team members
for the performance improvement.

3. Using CMM level 5 (optimizing level), improve the software process.
4. Provide the improvement guidance for the software team.
5. Provide the university teaching.

There are five framework activities in TSP
e Launch

e High level design

e Implementation

e Integration and test

e Postmortem

In TSP there is great use of scripts, standards and forms. These documents hely

the team to seek guidance in their work and improve the overall quality of the worl

product.
Thus in this chapter we have discussed all the process related concepts.

V MODEL

V- model means Verification and Validation model. , the V-Shaped life cycle is a sequential

path of execution of processes. Each phase must be completed before the next phase begins. V-

Model is one of the many software development models. Testing of the product is planned in

parallel with a corresponding phase of development in V-model.

Developer’s Life Cycle
(Verification phase)

BRS(Business req.

Tester’ s Life Cycle
(Validation phase)

Acceptance testing

v

specifications)

N\

SRS(System req.

/

System testing

A4

specifications)

\

HLD (High level

v

System integration

design)

N\

LLD (Low level

testing

/

Component

v

design)

A4

testing

/

Coding

N\

Unit testing

F

CODE

The various phases of the V-model are as follows:

Requirements like BRS and SRS begin the life cycle model just like the waterfall model. But,

in this model before development is started, a system test plan is created. The test

plan focuses on meeting the functionality specified in the requirements gathering.

The high-level design (HLD) phase focuses on system architecture and design. It provide

overview of solution, platform, system, product and service/process. An integration

test plan is created in this phase as well in order to test the pieces of the software systems

ability to work together.

The low-level design (LLD) phase is where the actual software components are designed. It
defines the actual logic for each and every component of the system. Class diagram with all
the methods and relation between classes comes under LLD. Component tests are created

in this phase as well.

The implementation phase is, again, where all coding takes place. Once coding is complete,
the path of execution continues up the right side of the V where the test plans developed

earlier are now put to use.

Coding: This is at the bottom of the V-Shape model. Module design is converted into code by

developers. Unit Testing is performed by the developers on the code written by them.

Advantages of V-model:

Simple and easy to use.

o Testing activities like planning, test designing happens well before coding. This saves

a lot of time. Hence higher chance of success over the waterfall model.
e Proactive defect tracking — that is defects are found at early stage.

e Avoids the downward flow of the defects.

Works well for small projects where requirements are easily understood.
Disadvantages of V-model:
e Very rigid and least flexible.

o Software is developed during the implementation phase, so no early prototypes of
the software are produced.

¢ If any changes happen in midway, then the test documents along with requirement
documents has to be updated.

When to use the V-model:

¢ The V-shaped model should be used for small to medium sized projects where
requirements are clearly defined and fixed.

e The V-Shaped model should be chosen when ample technical resources are available

with needed technical expertise.

e High confidence of customer is required for choosing the V-Shaped model approach.
Since, no prototypes are produced, there is a very high risk involved in meeting

customer expectations.

Process Models

3.1 Introduction

Process models are proposed in order
models detine the distinet sot of activitios,
high quality software. There are different process

to adopt systematic approach in software
tanks and work

development. These
products that are required to create
models with difterent terminologies but their generic framework activities are almost

Q >
same. To be more specitic these process models can also be called as prescriptive
prescribe the process clements such as framework

actions, tasks, work products and quality. All software

process model because they
ork activities hence they are also

activities, software engineering
process models can accommodate the general framew
recogrused as generic software process models

In this chapter we discuss various seneric process models along with their merits

and demerits and applicability.

3.2 Process model
The process model can be defined as an abstract representation of process. The

process model is chosen based on nature of ~.nltwaw project.

Generic software me O8s Hl(]dt‘lﬁ are e
The Waterfall Model - ‘»opdmteund dlslmgl phawq of spvcxﬁcatum, im_a

*

deve Iopment : $
Prototyping Model - ~\ quul\ dcstbn appxomh 18 andoptc

e Incremental Models ~ It emphasizes on short development cycle.
O Rapid Application and Development (RAD) Model =
Models - qpecxfu.anon development'and vaixda’non are

Evolutionary Process

interleaved.
o Incremental Model
Spiral Model

o
o WINWIN spiral model
o Concurrent Deve_iopmenjt"

(3-1)

3-2 Process Mode

Software Engineering N

3.3 Life Cycle Models 3
. : in which a project specifies, prototypes, desigy
A life cycle is the sequence in s de life' |

Using Jife yele

' are engi
implements, tests, and maintains a piece of soft:jvarei In s:rf:v\; rocessgl
' ' f software developm !

cycle model depicts various stages o : ;
rr?odel various development issues can be solved at the appropriate time.

3.3.1 Waterfall Model

* The waterfall model is also called as :
cycle model'. It is the oldest software paradigm. This model suggests ?

Systematic, sequential approach to software development.

linear-sequential model' or 'classje life

* The software development starts with requirements gathering phase. Then
progresses through analysis, design, coding, testing and maintenance,
Following figure illustrates waterfall model,

Fig. 3.1 Waterfa|) model

e In requirement Gathering and analysis phase the basic requirementg of the

* Software architectyre
* Interface Tepresentation

* Algorithmijc details,

Software Engineering 3-3 Process Models

-

The requirements are translated In wome sny to represent form using which

coding can be done effectively and elficlently, ‘The design needs to be documented for
further use.

2]
e Coding In a step In which denign s translated into machine-readable form. If

denign In done with sufficlent detall then coding, can be done effectively.
Programs are created In this phase,

o Tenting begine when coding s done. While performing testing the major
focus v on logical Internals of the software, 'I'he testing ensures execution of
all the paths, functional behaviours, 'The purpose of testing is to uncover
errors, fix the bugs and meet the customer requirements,

e Maintenance in the longest life cycle phase. When the system is installed and
put in practical use then errors may pet introduced, correcting such errors
and putting it in use is the major purpose of maintenance activity. Similarly
enhancing, system's services as new requirements are discovered is again
maintenance of the system,

This model is widely used model, although it has many drawbacks. Let us discuss
drawbacks of waterfall model.

Drawbacks of waterfall model

There are some problems that are encountered if we apply the waterfall model

and those are

1. It is difficult to follow the sequential flow in software development process. If
some changes are made at some phases then it may cause some confusion.

2. The requirement analysis is done initially, and sometimes it is not possible to
state all the requirements explicitly in the beginning. This causes difficulty in
the project.

3. The customer can see the working model of the project only at the end. After
reviewing of the working model; if the customer gets dissatisfied then it causes
serious problems.

4. Linear nature of waterfall model induces blocking states, because certain tasks
may be dependant on some previous tasks. Hence it is necessary to accomplish
all the dependant tasks first. It may cause long waiting time.

3.4 Prototyping Model
e In prototyping model initially the requirement gathering is done.

e Developer and customer define overall objectives; identify areas needing
more requirement gathering.

Software Engineering

&N represents what wijj; bo . _

* Then a quick design is prepared. This desi]
¢

to user- in input and output format.

From the quick design a prototype is prepared. Customer of
quirements. Iteratively Proto

the prototype in order to refine the re ¥ | o
tuned for satisfying customer requirements. Thus prototype is importyp, 1]
identify the software requirements. *
* When working prototype is built, developer use existing program fragmenlx

Or program generators to throw away the prototype and rebuild the SYstem §
to high quality.

user e"aluatQ '

Communication Build!ng of
with). quick
customer design

il

U |

Deployment _]
delivery A Consgfuction
and N
feedback prototype

Fig. 3.2 Prototyping

Certain classes of mathematical algorithms, subset of command driven
systems and other applications where results can be easily examined without

real time interaction can be developed using prototyping paradigm. ‘

When to choose it ?

* Software applications that are relatively easy to prototype almost always !
involve human-machine interaction (HCI) the prototyping model is |{

suggested.

the efficiency of an algorithm or the

adaptability of an Operating system then prototype serves as a better choice.

Software Engineering

— Y Process Models

Drawbacks of Prototyping

1. In the first version

rebuilding of the sVs
t)
level of quality. ystem. Whereas rebuilding of new system maintains high

2. The fi i
e first version may have some compromises

3. Sometimes developer may

_ make i : :
working quickly. Later Implementation compromises to get prototype

on develnper may become comfortable with
Y they are Inappropriate.

3.5 Incremental Model

e The increm
iterative i ental model .has same phases that are in waterfall model. But it is
€ In nature. The incremental model has following phases. '

1. Analysis 2, Design
3. Code 4. Test

See Fig. 3.3 on next page.

* The incremental model delivers series of releases to the customer. These
releases are called increments. More and more functionality is associated
with each increment.

e The first increment is called core product. In this release the basic
requirements are implemented and then in subsequent increments new
requirements are added.

The word processing software package can be considered as an example of
incremental model. In the first increment only the document processing
facilities are available. In the second increment, more sophisticated document
producing and processing facilities, file management functionalities are given.
In the next increment spelling and grammar checking facilities can be given.
Thus in incremental model progressive functionalities are obtained with each

release.

When to choose it?
1. When requirements are reasonably well-defined. -
2. When overall scope of the development effort suggests a purely linear effort.

3. When limited set of software functionality needed quickly.

Software Engineering

I9Pow jeyuswaiou; ay) ¢'¢ ‘big

aw
JusWanul u
jo Bw>__MD e Iy °P0D ubisag sisAjeuy
wawendy ¢
pi
joksnjeg| oL = 9p0y ubisaq |- sishleuy
Wwewssoul | 7
S8 -] =
10 Kianijag e PO ubisaq | sisAjeuy
Wawesouy |
CETI B
J0 Kianjjeg L 9p0) ubisaq

sisAjleuy

Process Models

involved in the PiSieck Opted when there are less number of people

customer. S least core product can be delivered to the

3.5.1»Rapid Application Development (RAD) Model

The rapid application de\’elopment model is type

_ . of incremental software
process model in which thepe is extremely short dey

elopment cycle.

e This m IS simi :

i odel is §umlar to waterfall model which achieves the high speed
€velopment using component based construction,

e To de"fllo_p the fully functional system within short time period using this
mod.el It IS necessary to understand the requirements fully and to have a
restricted project scope.

Team 1 Team 2 Team n
Blsiness Business Business
mocelling —7' modelling _1 modelling
Datz Data Data
modeliing j modelling j modelling _1
Process Process Process
modelling _‘ modelling W modelling _1
Application Application Application
Ggeneration j generation '_1 generation
Testing and Testing and Testing and
turmover turnover turnover

1)

Fig. 3.4 Rapid application development model

Various phases of RAD model are
Business modeling — In business modeling, the information flow is modeled
into various business functions. These business functions collect following

information.
Information that drives the business process.

The type of information being generated.
The generator of information.

The information flow.

The processor of information.

Process Modek 3

3-8 |
Software Engineering . — — % |
e information obtained in business modg i

In this phase th _
: cterl)
ek, Ihe ther data objects is defined.

2) Data modeling -
classified into data o

] o ionship among yarious |
identified. The relationship se the data objects are transformed int
the irformation from data objects and

Process modeling — In this pha

processes. These processes are to extr'act P
are responsible for implementing business :

3)

4) Application generation — For creating s

used. RAD also makes use of reusable components or creates reusabje |

components to have rapid development of software.

5) Testing and turnover — As RAD uses reusable components the testing efforts
are reduced. But if new components are added in software development |

process then such components need to be tested. It is equally important to test

all the interfaces.

3.6 Evolutionary process Model

3.6.1 Spiral model

* This model possess the iterative nature of prototyping model and controlled
and systematic approaches of the linear sequential model.

* This model gives efficient development of incremental versions of software.
In this model, the software is developed in series of increments.

framework activities are denoted by task regions.

* Usually there are six tasks regions. The spiral model is as shown in Fig. 3.5.
(See Fig. 3.5 on next page).

statement at each evolutionary level. Also ri ' ifi
‘ risks can be identif ifi
at each such level. et ov Retifed

around the spiral the prototype gets developed and the
versions of software gets developed.

stics of data objects (attributes) are 1

oftware various automation tools can p,

1 2 Software Engineering 3.9

Process Modols
1§

Ntq Planning Risk analysis

ind

Customer
communication

be
ble
)rtg
ent
est \

Concept
development
projects

Engineering

Project entry
d point axis

New
product

development
C. rojects
Product
enhancement
€ projects
Product
maintenance
. projects
Customer evaluation Construction
and feedback and release
d
p Fig. 3.5 Spiral model
For instance concept development project will start at core of spiral and will
continue along the spiral path. If the concept has to be developed into actual project
B then at entry point 2 the product development process starts. Hence entry point 2 is
d called product development project entry point. The development of the project can be
carried out in iterations. '
d * The task regions can be described as,
; o g L ‘
) Custome.r cqmmumcahon In this region it is suggested to establish customer
- communication.

Process Mog,.
3-10 doh

—
ineering i
Software Engine d out in order to define resoyr

. ivities are carri€

i) Planning - All plannm.g aCﬂI’al:; d activities. 3

time line and other project T€ . lculate technical and management rigk |

i) Risk analysis - The tasks required 0 €€ |
are carried out.

g - In this task region,. 1 ont i

representations of applications are carried out. e construct. |

_ All the necessary tasks required 10 test, g

v) Construct and release tacks that are require d to provide |

install the application are conducted. .Some 25k

user support are also carried out in this task region. g

vi) Customer evaluation — Customer’s feedback is obtained and F)asecll1 c;n custtomer ,
evaluation required tasks are performed and implemented at installation stage.

it -

PSRN

tasks required to build one or mop
iv) Engineerin

e In each region, number of work tasks are carried out depending upon the
characterisics of project. For a small project relatively small number of work

tasks are adopted but for a complex project large number of work tasks can 1
be carried out. i

* In spiral model, the software engineering team moves around the spiral in a
clockwise direction beginning at the core.

Advantages of spiral model

L. Requirement changes can be made every stage.

2. Risks can be identified and rectified before they get problematic.
Drawbacks of spiral model

e It is based on customer communication. If th.

€ communication is not proper
then the software product that gets developed g

will not be up to the mark.
It demands considerable risk assessment. If

the risk assessm i
properly then only the successful product can b SAETs dong

e obtained.

3.7 The Unified Process

Proposed by Iy bson
umbaugh. This meoq i (e
nature. Let us discuss various phases of unifieq pr(fcle e eremental o
SS
There are 5 pPhases of unifieq Process model anq th,
* Inception e

* Elaboration

® Construction

.‘-‘\

Software Engineering 3-11 Process Models

e Transition
e Production
Let us understand each of these phases in detail.

\ im:e;}!im“ 3

=1 Planning

Communication Modeling

Y

Construction

Deployment

|

Release

Software increment

Fig. 3.6 Unified Process Model

Inception

In this phase there are two major activities that are conducted: communication and
planning. By having customer communication business requirements can be identified.
Then a rough architecture of the system is proposed. Using this rough architecture it
then becomes easy to make a plan for the project. Use cases are created which
elaborates the user scenario. Using use cases the sequence of actions can be identified.
Thus use cases help to identify the scope of the project which ultimately prov

es to be
the basis for the plan.

Elaboration

Elaboration can be done using two activities: planning and modelling. In th

is phase
the use cases are redefined. And an architectural represent

ation is created using five
models such as use-case model, analysis model, design model, implementation model

3-12
Software Engineering

ble baseline gets created.

Thus executa e reasonable.

and deployment model. risks and delivery dates ar

carefully to check whether scope,

Construction

i i et
The main activity in this phase 1s.t0 ir\]egtkrati
and design activities that are started in elabo

and a source code is developed which g drar g Sy
unit testing is conducted and acceptance testing 1S ca

Transition

In the transition phase all the activities that are rquirgd at the Cslmeh of if)};tl‘(/)v);rrlletilst
of the software product are carried out. Beta testing is conducted when N 2
delivered to the end user. User feedback report is used to remove d.efects . om the
created system. Finally software team prepares user manuals, installation gu1d.es and
trouble shooting procedures. This makes the software more usable at the time of

release.

Production

This is the final phase of this model. In this phase mainly the maintenance
activities are conducted in order to support the user in operational environment.

Various work products that ma

y get generated in every phase are as given
below -

 Inception Phase | Elaboration Phase Construction | Transttion ohace]

Phase - |
* Initial use case model ® Use case model * Design * Delivered software
® Initial risk assessment * Requirements model increments
® Project plan Analysis model * Software * Beta test report
® Architecture model components

® User feedback
® Preliminary design ® Test plan

report.
model ® Test cases
* Risk Jist s Tser
* lterative project plan Manual
* Preliminary yser ® Installation
Mmanual manua|

\

] Thus the generic software Process models 4y
evelopment process in order tq reduce chapg j
these models Suggest differen 1

of generic framework activities

€ applied for many years in software

t process flow p | the' C e o development. Each of
ut the insis on PerfOl‘ming the same set

t

Process Mode|s
— 8

Then a plan is Createq

he use cases operational. The analys;s

on phase are completed in-this phase
i tionalities. Th

implements all desired functi -

|

L s et

ARl F RN N VB

SN A e 48

Software Engineering 1.0
Solved Exercise
Q v Pumiore i attwny o adnmey v

Ane @ A BR ool s e suuene whRh 3 oropec
WD NN and wasiaes 3

T W wmwee B riture @erupment

Srecites prototypes, | psas
S of witvae I wotthvare SIS, e U
N S e - .
VORI Ui VATOUR \'f:i_\;‘:w OF i B I e — _7"5_","—: the vz
PRI VRTINS deveioement st i
'4\.“ an A, G J ST BaAnrni) . Y : LB
TINAN & N N \\“\\ \\1\\\.\\ ey \e\‘;_‘ttt‘rxﬁ" Oof e i e T S LUITErTesTT U TR
o be e behore actaal prodia gets deveiopad, 1 fre lite o muust 3 s QT
R J R ST 3 A TN -))
\k\‘\i\\k‘\ RIS the O A PRI e i i MM OORROTRETTEINGG CHT O OITRRD Ul
ettty annd ety

e _uvag & e aproprate e Tre wenmoz

o .
WX ARV wire iy e cyxterttx (frere xR Q0
MOy} N .
‘\\\\\\«"i \\k‘*e\\,‘i‘x‘\‘\\—‘(\i O it N
pretertad

U N wesdertr, b et oisaes ke T moug: €

Q. ‘ "\‘1\ ‘\“"“'(\\i‘\‘ Pt) PouTRAY N R PR o) e

Ane 0 The woflware andikectoee

stvex e Ty Tt S S r s idan Thiae
aapaents amd e miecactions. e

y "
! QMY R borniiieettite vy quibw e oy ~

\\0\\\\1\\\\(and slvinctuare oF that model s

prttitemeg ooty or verveoaly, T

‘\\““\ 111 l\\\}‘l\‘l\\\‘l\hﬂ\\" & \i\:.t:‘.i\ o e it

Q. 3 \\k'\{l‘ ary *’“‘\‘ «t“*.i\\‘{\i\\\ Y o (LAY & S TR R

thMe Ut Opereeg et AT L e 7T

Ane 0} It e mlbgele teamse o laege o o WURHE R WOt orr B

sualalde popecis

.,

\‘\\\ \\\\‘\h‘l \\\;\Hl\‘-\ "\“-!*‘l\ W EEen e VOV i NI N ! i

vunntnent v lackang e KO poopacs wall

Wbl

-5

1 he '.‘\\‘I\‘\'l“ g ALY il REVITIIEY MOV V¥ Hesa L

1 there e oo approprate moedulnceaiion e R

MUY TN i
et torimance can b prebdem e cochy oo s
5 Thye Pt g ALY tedel tind 1t Gibicudt 1o adort new B MO
Q 4 Hlow does @ xpintd oo sepresonl o PSS Sofiiie (0 " epresg e ot s ek e
Ana “l_‘h.\l mandel epesents o precess antable o TREHES L b teeln THM DeogdsQene

Devanae o follow g easons

IoNoitwae evelves as the Profect prrogresseses Nind ot every evoluiveiag v S iy

NP
" “ \’l\u\“‘\‘“ ‘h\\ \h\\\-l“‘l\q [T} ‘ll“l\ Ih\- LA laoly pwe YOO Y R ey

tigks Ay Wlentibied amd "L“‘t‘.';\‘\‘ i e e teducad b evey

L vy

Q‘\’\ilHH\\l\ ol thy “I\‘\'\\\' I I'\'li'm‘ L l\‘\“‘l'l'& L S T T R T R RN Y T A R

developiment o the predudt
Vo he Merative Bameworke help i analy 2ing e piadint a eveiy ovaoibsinosigs >

alape

Software Engineering

3-14 Process Modelg i

Q.5 Compare and contrast waterfall mo

4. The spiral model demand

s a direct consideration of technical risks at all stages
-oblematic.
of project. The risks are reduced before they get pr

lel with spiral model.

Ans. : I -
Spiral mode
Waterfall model P o
. - . i
i i i It is developed in |teratlon_s.‘ Hence
- Eieﬁu"e'l's w? ” ﬁ:glirstandmg RUETHIMenS requirements can be identified at new
and familiar tec gy- ol o
Difficult to accommodate changes after the The required changes can be made at every
process has started. stage of new version.

Can accommodate iteration but indirectly.

It is iterative model.

Risks can be identified at the end which may
cause failure to the product.

Risks can be identified and reduced before
they get problematic.

The customer can see the working model of
the project only at the end. After reviewing of
the working model; if the customer gets
dissatisfied then it causes serious problems.

The customer can see the working product at
certain stages of iterations.

Customers prefer this model.

Developers prefer this model.

This model is good for small systems. This model is good for large systems.
It has sequential nature. It has evolutionary nature.
Q. 6 List out the problems encountered in Linear sequential model.
Ans. : The problems encountered in linear sequential model are -
1. It is difficult to follow the sequential flow in software development process. If
some changes are made at some phases then it may cause some confusion.
2. The requirement analysis i initi i it i
- aclll - reqmree;{ v51i is dc;ng l1mt1alt1£:, and sometimes it is not possible to
ents explicitly in the beginning. Thi iffi i
the project, o g § causes difficulty in
3. The customer can s i
ee the w i
reviewing of the working mc?;tingf EOdel el s e s e
_ ; I the cust ' isfi ;
S HETiE SecblEri omer gets dissatisfied then it causes
4. Li ; :
Linear nature of this mode] induces blockin

be depend . g states, because certain tasks ma
pendent on some previous tasks. Hence it is hecessary to accomplish al};

the dependent tasks first. |t may cause long waiting time

Software Engineering 3.15

Process Models
Q. 7 Which type of applications suit RAD model?

Ans.': The RAD model is suitable for information system applications, business
applications and the for systems that can be modularized because of followin
reasons -

1.

Justify your answer.

This model is similar to waterfall

el model but it uses very short development

2. Tt Uses - component-based construction and emphasises reuse and code
generation.

3. This model uses multiple teams on scaleable projects.

4. The RAD model is suitable for the projects where technical risks are not high

&

The RAD model requires heavy resources.

Q. 8 What is meant by ‘blocking states’ in linear sequential model?

Ans .: The linear nature of linear sequential model brings a situation in the project
that some project team members have to wait for other members of the team to

complete the dependent tasks. This situation is called “blocking state
sequential model. For example after performing the requirement gat:

thering and
analysis step the design process can be started. Hence the team working 2
stage has to wait for gathering of all the necessary requirements. Similarly the
programmers can not start coding step unless and until the design of the project
completed.

Q.9

Identify in which phase of the software life cycle the following documents are delivered.
(a) Architectural design
(b) Test plan
(c) Cost estimate

(d) Source code document

Ans:
Document Phase
(a) Architectural Design Design
(b) Test plan Testing

(c) Cost estimate Project management and

planning

(d) Source code document Coding

Process Mog,,
3-16 0 Mo |

wring.
wn I software engineering

nelneering 18 a Htumlulum‘- vr:tityrthat'pém be
in sottware €ng { wold on the open market to any CUstOmg, 7:
nt m‘gnnimlhym e sroduct consists of computer p_’"’%mms’
i civih wmentation can be in hard copy form or i 3
ntation (t/l’:;,[-l’m;uwurv product are databases, Worg

Software Englnozryw
50 o and proce
gine the terms produc

Q. 10 lenne t

Mhe product

ptmhm\i by developnw

who is able to buy them, he
and associated docun .
‘ of the examples

Ans. !

pn\\\iun‘s. ‘
mav be e visual form). Sonw

‘ e o 1 » - ,
PrOCSSOLS, drawing tool N I)
er

in software engine L il
it }‘i lop software system. Various activities undg,
we ! :
ivities are required to dt
activities that are
software process are -
e Specification
e Design and implementation

Validation

.
e Evolution
Q. 11 For each types of process models, identify the types of project suitable to implement.
Ans. :
* Waterfall Model is useful for the projects in which the requirements are well
understood and unlikely to change radically during the system development.
* Incremental model is used when within a small time span at least a core

product needs to be delivered to the customer. The incremental model can be

adopted when there are less number of people involved in the project and
when a limited set of software functionality is needed quickly.

* Rapid application development model is usefy] for the component based
projects which can be developed within extremely short time span
(60 to 90 days)

* Spiral model] ig suitable for a proj i :
Jects in which | > :
developed, arge scale systems can be

* Prot i i
alrgoogtt)}r‘f;ng r;mdel 1S useful for developing the systems efficiency of
3 i ,
o Customz ra tzpéa;?hty of' an operating System is not criteria and devel);Pef
gether define the gyerq) Objective of the software. Certain
. Cer

classes of Mathematica] i
algorithms, sub _
be developed using Prototyping model et of command driven systems can

————————— N A S A

Software Engineering

3-17

i s R

Process Modals

Q. 12 Discuss the magor diflevences between woftware life cycle model and a process model

Ans.

Software life cycle modol

L T Y PP VRO

Procoss model

ind il

This model is based on common four activitios :

Analysis, design, code and taesling.

This modol is based on problem defintion,
technical development, software inteyration
and oxisting status,

_—

The software development process can be
celarly and systematically defined in phases.

The software development process can not be
clearly defined in phases,

Customer interaction is possible in every stage

of software development process in this model.

Customer interaction is only at initial stage of
software development.

Large scale projects can be handled using this
approach.

Large scale projects may be caught in chaotic
situation using this approach.

Review Questions

1. What is the need of process model? What are different process models that are used

commonly ?

Explain the incremental model.

Compare waterfall model and spiral model

NS U R W N

model?

What are the drawbacks of waterfall model?

Describe the rapid application development model

Describe the demerits of prototyping model.
Explain the unified process model. What are the work products that may get generated in this

Qaa

CHAPTER 4 - AN AGILE VIEW OF PROCESS
2005 McGraw-Hill Higher Education
http://highered.mcgraw-hill.com/sites/0072853182/student_view0/chapter4/chapter_summary.html

Overview

e Agile software engineering represents a reasonable compromise between to
conventional software engineering for certain classes of software and certain types of
software projects

e Agile development processes can deliver successful systems quickly

e Agile development stresses continuous communication and collaboration among
developers and customers

e Agile software engineering embraces a philosophy that encourages customer
satisfaction, incremental software delivery, small project teams (composed of software
engineers and stakeholders), informal methods, and minimal software engineering
work products

e Agile software engineering guidelines stress on-time delivery of an operational
software increment over analysis and design

Manifesto for Agile Software Development

e Proposes that it may be better to value:
o Individuals and interactions over processes and tools
o Working software over comprehensive documentation
o Customer collaboration over contract negotiation
o Responding to change over following a plan
e While the items on the right are still important the items on the left are more valuable
under this philosophy
e Note: although most practitioners agree with this philosophy in theory, many
pragmatic issues surface in the real world that may cause items on the right to be as
important as items on the left

Agility

An agile team is able to respond to changes during project development
e Agile development recognizes that project plans must be flexible

e Agility encourages team structures and attitudes that make communication among
developers and customers more facile

e Agility eliminates the separation between customers and developers

e Agility emphasizes the importance of rapid delivery of operational software and de-
emphasizes importance of intermediate work products

e Agility can be applied to any software process as long as the project team is allowed to
streamline tasks and conduct planning in way that eliminate non-essential work
products

Agile Processes

e Are based on three key assumptions
1. It is difficult to predict in advance which requirements or customer priorities
will change and which will not
2. For many types of software design and construction activities are interleaved
(construction is used to prove the design)
3. Analysis, design, and testing are not as predictable from a planning
perspective as one might like them to be
e Agile processes must be adapted incrementally to manage unpredictability

e Incremental adaptation requires customer feedback based on evaluation of delivered
software increments (executable prototypes) over short time periods

Agility Principles

Page 1 of 5

Page 2 of 5

Highest priority is to satisfy customer through early and continuous delivery of valuable
software

Welcome changing requirements even late in development, accommodating change is
viewed as increasing the customer's competitive advantage

Delivering working software frequently with a preference for shorter delivery schedules
(e.g., every 2 or 3 weeks)

Business people and developers must work together daily during the project

Build projects around motivated individuals, given them the environment and support
they need, trust them to get the job done

Face-to-face communication is the most effective method of conveying information
within the development team

Working software is the primary measure of progress

Agile processes support sustainable development, developers and customers should be
able to continue development indefinitely

Continuous attention to technical excellence and good design enhances agility
Simplicity (defined as maximizing the work not done) is essential
The best architectures, requirements, and design emerge from self-organizing teams

At regular intervals teams reflects how to become more effective and adjusts its
behavior accordingly

Human Factors

Traits that need to exist in members of agile development teams:
o Competence

Common focus

Collaboration

Decision-making ability

Fuzzy-problem solving ability

Mutual trust and respect

Self-organization

O O O0OO0OO0O0

Agile Process Models

Extreme Programming (XP)

Adaptive Software Development (ASD)
Dynamic Systems Development Method (DSDM)
Scrum

Crystal

Feature Driven Development (FDD)

Agile Modeling (AM)

Extreme Programming

Relies on object-oriented approach
Key activities

o Planning (user stories created and ordered by customer value)

o Design (simple designs preferred, CRC cards and design prototypes are only
work products, encourages use of refactoring)

o Coding (focuses on unit tests to exercise stories, emphasizes use of pairs
programming to create story code, continuous integration and smoke testing
is utilized)

o Testing (unit tests created before coding are implemented using an
automated testing framework to encourage use of regression testing,
integration and validation testing done on daily basis, acceptance tests focus
on system features and functions viewable by the customer)

Adaptive Software Development

Page 3 of 5

Self-organization arises when independent agents cooperate to create a solution to a
problem that is beyond the capability of any individual agent

Emphasizes self-organizing teams, interpersonal collaboration, and both individual and
team learning

Adaptive cycle characteristics

Phases
o Mission-driven
Component-based
Iterative
Time-boxed
Risk driven and change-tolerant
Speculation (project initiated and adaptive cycle planning takes place)
Collaboration (requires teamwork from a jelled team, joint application
development is preferred requirements gathering approach, minispecs
created)
o Learning (components implemented and tested, focus groups provide
feedback, formal technical reviews, postmortems)

OO0 O0OO0OO0O0

Dynamic Systems Development Method

Scrum

Provides a framework for building and maintaining systems which meet tight time
constraints using incremental prototyping in a controlled environment
Uses Pareto principle (80% of project can be delivered in 20% required to deliver the
entire project)
Each increment only delivers enough functionality to move to the next increment
Uses time boxes to fix time and resources to determine how much functionality will be
delivered in each increment
Guiding principles
o Active user involvement
Teams empowered to make decisions
Fitness foe business purpose is criterion for deliverable acceptance
Iterative and incremental develop needed to converge on accurate business
solution
All changes made during development are reversible
Requirements are baselined at a high level
Testing integrates throughout life-cycle
o Collaborative and cooperative approach between stakeholders
Life cycle activities
o Feasibility study (establishes requirements and constraints)
o Business study (establishes functional and information requirements needed
to provide business value)
o Functional model iteration (produces set of incremental prototypes to
demonstrate functionality to customer)
o Design and build iteration (revisits prototypes to ensure they provide business
value for end users, may occur concurrently with functional model iteration)
o Implementation (latest iteration placed in operational environment)

O OO

O OO

Scrum principles

o Small working teamed used to maximize communication, minimize overhead,
and maximize sharing of informal knowledge

o Process must be adaptable to both technical and business challenges to
ensure bets product produced

o Process yields frequent increments that can be inspected, adjusted, tested,
documented and built on

o Development work and people performing it are partitioned into clean, low
coupling partitions

o Testing and documentation is performed as the product is built

o Provides the ability to declare the product done whenever required

Page 4 of 5

Crystal

Process patterns defining development activities

o Backlog (prioritized list of requirements or features the provide business value
to customer, items can be added at any time)

o Sprints (work units required to achieve one of the backlog items, must fir into
a predefined time-box, affected backlog items frozen)

o Scrum meetings (15 minute daily meetings) addressing these questions: What
was done since last meeting? What obstacles were encountered? What will be
done by the next meeting?

o Demos (deliver software increment to customer for evaluation)

Development approach that puts a premium on maneuverability during a resource-
limited game of invention and communication with the primary goal of delivering useful
software and a secondary goal of setting up for the next game
Crystal principles
o Its always cheaper and faster to communicate face-to-face
o As methodologies become more formal teams become weighed down and
have trouble adapting to project work vagaries
o As projects grow in size, teams become larger and methodologies become
heavier
o As projects grow in criticality some degree of formality will need to be
introduced in parts of the methodology
o As feedback and communication become more efficient the need for
intermediate work products is reduced
o Discipline, skills, and understanding counter process, formality, and
documentation
o Team members not on the critical project path can spend their excess time
improving the product or helping people who are on the critical path
Incremental development strategy used with 1 to 3 month time lines
Reflection workshops conducted before project begins, during increment development
activity, and after increment is delivered
Crystal methodologies
o Clear (small, low criticality projects)
o Orange (larger, moderately critical projects)
o Orange Web (typical e-business applications)

Feature Driven Development

Practical process model for object-oriented software engineering
Feature is a client-valued function, can be implemented in two weeks or less

FDD Philosophy

o Emphasizes collaboration among team members

o Manages problem and project complexity using feature-based decomposition
followed integration of software increments

o Technical communication using verbal, graphical, and textual means

o Software quality encouraged by using incremental development, design and
code inspections, SQA audits, metric collection, and use of patterns (analysis,
design, construction)

Framework activities

o Develop overall model (contains set of classes depicting business model of
application to be built)

o Build features list (features extracted from domain model, features are
categorized and prioritized, work is broken up into two week chunks)

o Plan by feature (features assessed based on priority, effort, technical issues,
schedule dependencies)

o Design by feature (classes relevant to feature are chosen, class and method
prologs are written, preliminary design detail developed, owner assigned to
each class, owner responsible for maintaining design document for his or her
own work packages)

o Build by feature (class owner translates design into source code and performs

Page 5 of 5

Agile Modeling

unit testing, integration performed by chief programmer)

e Practice-based methodology for effective modeling and documentation of software
systems in a light-weight manner

e Modeling principles

o

O O OO0

o

Model with a purpose

Use multiple models

Travel light (only keep models with long-term value)
Content is more important than representation
Know the models and tools you use to create them
Adapt locally

e Requirements gathering and analysis modeling

©)
)

Work collaboratively to find out what customer wants to do
Once requirements model is built collaborative analysis modeling continues
with the customer

e Architectural modeling

)
@)

Derives preliminary architecture from analysis model
Architectural model must be realistic for the environment and must be
understandable by developers

AGILE MODEL

WATERFALL MODEL

Agile model is an incremental delivery
process where each incremental
delivered part is developed through an
iteration after each time box.

The waterfall model is highly
structured and systematically steps
through requirements gathering,
analysis, SRS document
preparation, design, coding and
testing in a planned manner. These
phases of the Waterfall model
follow a sequential order.

While using an agile model, progress is
measured in terms of the developed and
delivered functionalities.

In Waterfall model, progress is
generally measured in terms of the
number of completed and
reviewed artifacts such as
requirement specifications, design
documents, test plans, code
reviews, etc. for which review is
complete.

Lack of proper formal documentation
leaves ample scope confusion and
important decisions taken during various
phases can be misinterpreted at later
phases.

In Waterfall model proper
documentation is very important,
which gives a clear idea what
should be done to complete the
project and it also serve as a
agreement between the customer
and development team.

Customer interaction is very high. After
each iteration, an incremental version is
deployed to the customer.

Customer interaction is very less.
The product is delivered to the
customer after the overall
development is completed.

AGILE MODEL

RAD MODEL

The Agile model does not recommend
developing prototypes but emphasizes
the systematic development of each
incremental feature at the end of each
iteration.

The central theme of RAD is based
on designing quick and dirty
prototypes, which are then refined
into production quality code.

The Agile team only demonstrate
completed work to the customer after
each iteration.

Whereas RAD teams demonstrate
to customers screen mock up and
prototypes, that may be based on
simplifications such as table
lookup rather than actual
computations.

Agile model is not suitable for small
projects as it is difficult to divide the
project into small parts that can be
incrementally developed.

When the company has not
developed a almost similar type of
project, then it is hard to use RAD
model as it is unable to reuse the
existing code.

AGILE MODEL

SPIRAL MODEL

The main principle of the Agile model is
to achieve agility by removing
unnecessary activities that waste time
and effort.

The main principle of the Spiral
model is risk handling.

The Agile model focuses on the delivery
of an increment to the customer after
each Time-box, so customer interaction
is more frequent.

Spiral model mainly deals with
various kinds of unanticipated risks
but customer interaction is less.

Agile model is suitable for large projects
that are easy to divide into small parts
that can be easily developed
incrementally over each iteration.

The Spiral model is suitable for
those projects that are prone to
various kinds of risks that are
difficult to anticipate at the
beginning of the project.

Agile model does not rely on
documentation.

Proper documentation is required
for Spiral model.

