

V MODEL

 V- model means Verification and Validation model. , the V-Shaped life cycle is a sequential

path of execution of processes. Each phase must be completed before the next phase begins. V-

Model is one of the many software development models. Testing of the product is planned in

parallel with a corresponding phase of development in V-model.

The various phases of the V-model are as follows:

Requirements like BRS and SRS begin the life cycle model just like the waterfall model. But,

in this model before development is started, a system test plan is created. The test

plan focuses on meeting the functionality specified in the requirements gathering.

The high-level design (HLD) phase focuses on system architecture and design. It provide

overview of solution, platform, system, product and service/process. An integration

test plan is created in this phase as well in order to test the pieces of the software systems

ability to work together.

The low-level design (LLD) phase is where the actual software components are designed. It

defines the actual logic for each and every component of the system. Class diagram with all

the methods and relation between classes comes under LLD. Component tests are created

in this phase as well.

The implementation phase is, again, where all coding takes place. Once coding is complete,

the path of execution continues up the right side of the V where the test plans developed

earlier are now put to use.

Coding: This is at the bottom of the V-Shape model. Module design is converted into code by

developers. Unit Testing is performed by the developers on the code written by them.

Advantages of V-model:

 Simple and easy to use.

 Testing activities like planning, test designing happens well before coding. This saves

a lot of time. Hence higher chance of success over the waterfall model.

 Proactive defect tracking – that is defects are found at early stage.

 Avoids the downward flow of the defects.

 Works well for small projects where requirements are easily understood.

Disadvantages of V-model:

 Very rigid and least flexible.

 Software is developed during the implementation phase, so no early prototypes of
the software are produced.

 If any changes happen in midway, then the test documents along with requirement
documents has to be updated.

When to use the V-model:

 The V-shaped model should be used for small to medium sized projects where
requirements are clearly defined and fixed.

 The V-Shaped model should be chosen when ample technical resources are available

with needed technical expertise.

 High confidence of customer is required for choosing the V-Shaped model approach.

Since, no prototypes are produced, there is a very high risk involved in meeting

customer expectations.

Page 1 of 5

CHAPTER 4 – AN AGILE VIEW OF PROCESS

2005 McGraw-Hill Higher Education
http://highered.mcgraw-hill.com/sites/0072853182/student_view0/chapter4/chapter_summary.html

Overview

• Agile software engineering represents a reasonable compromise between to

conventional software engineering for certain classes of software and certain types of
software projects

• Agile development processes can deliver successful systems quickly

• Agile development stresses continuous communication and collaboration among

developers and customers

• Agile software engineering embraces a philosophy that encourages customer

satisfaction, incremental software delivery, small project teams (composed of software
engineers and stakeholders), informal methods, and minimal software engineering
work products

• Agile software engineering guidelines stress on-time delivery of an operational
software increment over analysis and design

Manifesto for Agile Software Development

• Proposes that it may be better to value:

o Individuals and interactions over processes and tools

o Working software over comprehensive documentation

o Customer collaboration over contract negotiation

o Responding to change over following a plan

• While the items on the right are still important the items on the left are more valuable
under this philosophy

• Note: although most practitioners agree with this philosophy in theory, many

pragmatic issues surface in the real world that may cause items on the right to be as
important as items on the left

Agility

• An agile team is able to respond to changes during project development

• Agile development recognizes that project plans must be flexible

• Agility encourages team structures and attitudes that make communication among

developers and customers more facile

• Agility eliminates the separation between customers and developers

• Agility emphasizes the importance of rapid delivery of operational software and de-
emphasizes importance of intermediate work products

• Agility can be applied to any software process as long as the project team is allowed to

streamline tasks and conduct planning in way that eliminate non-essential work
products

Agile Processes

• Are based on three key assumptions
1. It is difficult to predict in advance which requirements or customer priorities

will change and which will not
2. For many types of software design and construction activities are interleaved

(construction is used to prove the design)
3. Analysis, design, and testing are not as predictable from a planning

perspective as one might like them to be

• Agile processes must be adapted incrementally to manage unpredictability

• Incremental adaptation requires customer feedback based on evaluation of delivered
software increments (executable prototypes) over short time periods

Agility Principles

Page 2 of 5

• Highest priority is to satisfy customer through early and continuous delivery of valuable
software

• Welcome changing requirements even late in development, accommodating change is

viewed as increasing the customer's competitive advantage

• Delivering working software frequently with a preference for shorter delivery schedules

(e.g., every 2 or 3 weeks)

• Business people and developers must work together daily during the project

• Build projects around motivated individuals, given them the environment and support

they need, trust them to get the job done

• Face-to-face communication is the most effective method of conveying information
within the development team

• Working software is the primary measure of progress

• Agile processes support sustainable development, developers and customers should be

able to continue development indefinitely

• Continuous attention to technical excellence and good design enhances agility

• Simplicity (defined as maximizing the work not done) is essential

• The best architectures, requirements, and design emerge from self-organizing teams

• At regular intervals teams reflects how to become more effective and adjusts its
behavior accordingly

Human Factors

• Traits that need to exist in members of agile development teams:

o Competence

o Common focus

o Collaboration

o Decision-making ability

o Fuzzy-problem solving ability

o Mutual trust and respect

o Self-organization

Agile Process Models

• Extreme Programming (XP)

• Adaptive Software Development (ASD)

• Dynamic Systems Development Method (DSDM)

• Scrum

• Crystal

• Feature Driven Development (FDD)

• Agile Modeling (AM)

Extreme Programming

• Relies on object-oriented approach

• Key activities

o Planning (user stories created and ordered by customer value)

o Design (simple designs preferred, CRC cards and design prototypes are only
work products, encourages use of refactoring)

o Coding (focuses on unit tests to exercise stories, emphasizes use of pairs

programming to create story code, continuous integration and smoke testing
is utilized)

o Testing (unit tests created before coding are implemented using an
automated testing framework to encourage use of regression testing,
integration and validation testing done on daily basis, acceptance tests focus
on system features and functions viewable by the customer)

Adaptive Software Development

Page 3 of 5

• Self-organization arises when independent agents cooperate to create a solution to a
problem that is beyond the capability of any individual agent

• Emphasizes self-organizing teams, interpersonal collaboration, and both individual and

team learning

• Adaptive cycle characteristics

• Phases

o Mission-driven

o Component-based

o Iterative

o Time-boxed

o Risk driven and change-tolerant

o Speculation (project initiated and adaptive cycle planning takes place)

o Collaboration (requires teamwork from a jelled team, joint application
development is preferred requirements gathering approach, minispecs
created)

o Learning (components implemented and tested, focus groups provide
feedback, formal technical reviews, postmortems)

Dynamic Systems Development Method

• Provides a framework for building and maintaining systems which meet tight time
constraints using incremental prototyping in a controlled environment

• Uses Pareto principle (80% of project can be delivered in 20% required to deliver the

entire project)

• Each increment only delivers enough functionality to move to the next increment

• Uses time boxes to fix time and resources to determine how much functionality will be
delivered in each increment

• Guiding principles

o Active user involvement

o Teams empowered to make decisions

o Fitness foe business purpose is criterion for deliverable acceptance

o Iterative and incremental develop needed to converge on accurate business

solution

o All changes made during development are reversible

o Requirements are baselined at a high level

o Testing integrates throughout life-cycle

o Collaborative and cooperative approach between stakeholders

• Life cycle activities

o Feasibility study (establishes requirements and constraints)

o Business study (establishes functional and information requirements needed

to provide business value)

o Functional model iteration (produces set of incremental prototypes to
demonstrate functionality to customer)

o Design and build iteration (revisits prototypes to ensure they provide business

value for end users, may occur concurrently with functional model iteration)

o Implementation (latest iteration placed in operational environment)

Scrum

• Scrum principles

o Small working teamed used to maximize communication, minimize overhead,
and maximize sharing of informal knowledge

o Process must be adaptable to both technical and business challenges to

ensure bets product produced

o Process yields frequent increments that can be inspected, adjusted, tested,
documented and built on

o Development work and people performing it are partitioned into clean, low

coupling partitions

o Testing and documentation is performed as the product is built

o Provides the ability to declare the product done whenever required

Page 4 of 5

• Process patterns defining development activities

o Backlog (prioritized list of requirements or features the provide business value
to customer, items can be added at any time)

o Sprints (work units required to achieve one of the backlog items, must fir into

a predefined time-box, affected backlog items frozen)

o Scrum meetings (15 minute daily meetings) addressing these questions: What
was done since last meeting? What obstacles were encountered? What will be
done by the next meeting?

o Demos (deliver software increment to customer for evaluation)

Crystal

• Development approach that puts a premium on maneuverability during a resource-
limited game of invention and communication with the primary goal of delivering useful

software and a secondary goal of setting up for the next game

• Crystal principles

o Its always cheaper and faster to communicate face-to-face

o As methodologies become more formal teams become weighed down and
have trouble adapting to project work vagaries

o As projects grow in size, teams become larger and methodologies become
heavier

o As projects grow in criticality some degree of formality will need to be

introduced in parts of the methodology

o As feedback and communication become more efficient the need for
intermediate work products is reduced

o Discipline, skills, and understanding counter process, formality, and

documentation

o Team members not on the critical project path can spend their excess time
improving the product or helping people who are on the critical path

• Incremental development strategy used with 1 to 3 month time lines

• Reflection workshops conducted before project begins, during increment development

activity, and after increment is delivered

• Crystal methodologies

o Clear (small, low criticality projects)

o Orange (larger, moderately critical projects)

o Orange Web (typical e-business applications)

Feature Driven Development

• Practical process model for object-oriented software engineering

• Feature is a client-valued function, can be implemented in two weeks or less

• FDD Philosophy

o Emphasizes collaboration among team members

o Manages problem and project complexity using feature-based decomposition
followed integration of software increments

o Technical communication using verbal, graphical, and textual means

o Software quality encouraged by using incremental development, design and

code inspections, SQA audits, metric collection, and use of patterns (analysis,
design, construction)

• Framework activities

o Develop overall model (contains set of classes depicting business model of
application to be built)

o Build features list (features extracted from domain model, features are
categorized and prioritized, work is broken up into two week chunks)

o Plan by feature (features assessed based on priority, effort, technical issues,

schedule dependencies)

o Design by feature (classes relevant to feature are chosen, class and method
prologs are written, preliminary design detail developed, owner assigned to
each class, owner responsible for maintaining design document for his or her
own work packages)

o Build by feature (class owner translates design into source code and performs

Page 5 of 5

unit testing, integration performed by chief programmer)

Agile Modeling

• Practice-based methodology for effective modeling and documentation of software
systems in a light-weight manner

• Modeling principles

o Model with a purpose

o Use multiple models

o Travel light (only keep models with long-term value)

o Content is more important than representation

o Know the models and tools you use to create them

o Adapt locally

• Requirements gathering and analysis modeling

o Work collaboratively to find out what customer wants to do

o Once requirements model is built collaborative analysis modeling continues

with the customer

• Architectural modeling

o Derives preliminary architecture from analysis model

o Architectural model must be realistic for the environment and must be
understandable by developers

AGILE MODEL WATERFALL MODEL

Agile model is an incremental delivery
process where each incremental
delivered part is developed through an
iteration after each time box.

The waterfall model is highly
structured and systematically steps
through requirements gathering,
analysis, SRS document
preparation, design, coding and
testing in a planned manner. These
phases of the Waterfall model
follow a sequential order.

While using an agile model, progress is
measured in terms of the developed and
delivered functionalities.

In Waterfall model, progress is
generally measured in terms of the
number of completed and
reviewed artifacts such as
requirement specifications, design
documents, test plans, code
reviews, etc. for which review is
complete.

Lack of proper formal documentation
leaves ample scope confusion and
important decisions taken during various
phases can be misinterpreted at later
phases.

In Waterfall model proper
documentation is very important,
which gives a clear idea what
should be done to complete the
project and it also serve as a
agreement between the customer
and development team.

Customer interaction is very high. After
each iteration, an incremental version is
deployed to the customer.

Customer interaction is very less.
The product is delivered to the
customer after the overall
development is completed.

AGILE MODEL RAD MODEL

The Agile model does not recommend
developing prototypes but emphasizes
the systematic development of each
incremental feature at the end of each
iteration.

The central theme of RAD is based
on designing quick and dirty
prototypes, which are then refined
into production quality code.

The Agile team only demonstrate
completed work to the customer after
each iteration.

Whereas RAD teams demonstrate
to customers screen mock up and
prototypes, that may be based on
simplifications such as table
lookup rather than actual
computations.

Agile model is not suitable for small
projects as it is difficult to divide the
project into small parts that can be
incrementally developed.

When the company has not
developed a almost similar type of
project, then it is hard to use RAD
model as it is unable to reuse the
existing code.

AGILE MODEL SPIRAL MODEL

The main principle of the Agile model is
to achieve agility by removing
unnecessary activities that waste time
and effort.

The main principle of the Spiral
model is risk handling.

The Agile model focuses on the delivery
of an increment to the customer after
each Time-box, so customer interaction
is more frequent.

Spiral model mainly deals with
various kinds of unanticipated risks
but customer interaction is less.

Agile model is suitable for large projects
that are easy to divide into small parts
that can be easily developed
incrementally over each iteration.

The Spiral model is suitable for
those projects that are prone to
various kinds of risks that are
difficult to anticipate at the
beginning of the project.

Agile model does not rely on
documentation.

Proper documentation is required
for Spiral model.

