Chapter Comments 6-1

Chapter 6

System Engineering

CHAPTER OVERVIEW AND COMMENTS

This intent of this chapter is to provide a brief introduction to the system engineering
process. The overall structure of computer-based systems is discussed and a brief
overview of the system engineering hierarchy is presented. Business process
engineering (BPR) and product engineering are discussed in overview fashion.

Note: Some reviewers of this edition argued that a discussion of system engineering is
beyond the scope of a software engineering text.

S/W Eng occurs as a consequence of a process called System engineering. System
Engineering focuses on analyzing, designing, and organizing those elements into a
system that can be a product, a service, or a technology for the transformation of
information.

6.1 Computer-Based Systems

This section introduces the systems view of engineering (all complex systems can be
viewed as being composed of cooperating subsystems). The elements of computer-
based systems are defined as software, hardware, people, database, documentation, and
procedures.

A computer-based system makes use of a variety of system elements.

Software: programs, data structures, and related work products.

Hardware: electronic devices that provide computing capabilities.

People: Users and operators of hardware and software.

Database: A large, organized collection of information that is accessed via S/w and
persists over time.

Documentation: manuals, on-line help files.

Procedures: the steps that define the specific use of each system element.

One complicating characteristic of computer-based system is that the elements
constituting one system may also represent one macro element of a still large system.
The micro-element is a computer-based system that is one part of a larger computer
based system.

6.2 The System Engineering Hierarchy

6-2 SEPA, 6/e Instructor’s Guide

The key to system engineering is a clear understanding of context. For software
development this means creating a "world view" and progressively narrowing its focus
until all technical detail is known.

In software engineering there is rarely one right way of doing something. Instead
designers must consider the tradeoffs present in the feasible solutions and select one
that seems advantageous for the current problem. This section lists several factors that
need to be examined by software engineers when evaluating alternative solutions
(assumptions, simplifications, limitations, constraints, and preferences).

Regardless of its domain of focus, system eng. Encompasses a collection of top-down
and bottom-up methods to navigate the hierarchy illustrated below:

Business or
Product Domain

L[]
Domain ofinte/re;:_— \

System element

World view

Domain view

Element view

[ETE TSR EUUS IS NUWY PV BORY O
R En I En e
EnEn R R RN R En

Detailed view

Chapter Comments 6-3

The system eng. Process usually begins with a “world view.” The entire business or
product domain is examined to ensure that the proper business or technology context
can be established.

The world view is refined to focus more fully on a specific domain of interest.

Within a specific domain, the need for targeted system elements (data, S/W, H/W, and
people) is analyzed.

Finally, the analysis, design, and construction of a targeted system element are initiated.

6.2.1 System Modeling

System modeling is an important element of the system eng. Process. The Engineer
creates models that:

1.
2.

3.

Define the processes that serve the needs of the view under consideration.
Represent the behavior of the processes and the assumptions on which the
behavior is based.

Explicitly define both exogenous and endogenous input to the model.
Exogenous inputs link one constituent of a given view with other constituents at
the same level of other levels; endogenous input links individual components of
a constituent at a particular view.

Represent all linkages (including output) that will enable the engineer to better
understand the view.

To construct a system model, the engineers should consider a number of restraining
factors: “Read examples of each in book page# 127.”

1.

2.
3.

Assumptions that reduce the number of possible permutations and variations,
thus enabling a model reflect the problem in a reasonable manner.
Simplifications that enable the model to be created in a timely manner.
Limitations that help to bound the system.

Constraints that will guide the manner in which the model is created and the
approach taken when the model is implemented.

Preferences that indicate the preferred architecture for all data, functions, and
technology.

6.3 Business Process Engineering: An Overview

The goal of Business Process Engineering (BPE) is to define architectures that will enable a
business to use information effectively.

BPE is one process for creating an overall plan for implementing the computing
architecture.

Three different architectures must be analyzed and designed within the context of
business objectives and goals:

6-4 SEPA, 6/e Instructor’s Guide

e Data architecture

e Application architecture

e Technology infrastructure

The data architecture provides a framework for the information needs of a business. The
building blocks of the architecture are the data objects that are used by the business.
Once a set of data objects is defined, their relationships are identified. A relationship

indicates how objects are connected to one another.

The application architecture encompasses those elements of a system that transform

objects within the data architecture for some business purpose.

The technology infrastructure provides the foundation for the data and application
architectures. The infrastructure encompasses the h/w and s/w that are used to

support the applications and data.

The complete
product

Systemnm analysis
{(World view)

J— []

capabilities \

hardware software

Component
engineering

I I I (Domain view)

data function behavior

prog

Analysis & Design
Modeling
(Element view)

component Software

Engineering

Construction
-

Integration

{Detailed view)

Chapter Comments 6-5
6.4 Product Engineering: An Overview

Emphasize that software engineers participate in all levels of the product engineering
process that begins with requirements engineering. The analysis step maps
requirements into representations of data, function, and behavior. The design step maps
the analysis model into data, architectural, interface, and software component designs.

6.5 System Modeling with UML

B In terms of the data that describe the element and the operations that manipulate the
data Deployment diagrams
B Each 3-D box depicts a hardware element that is part of the physical
architecture of the system
B Activity diagrams
B Represent procedural aspects of a system element
B (lass diagrams
B Represent system level elements

CLSSprocessor

Sorting subsystem Operator display

Sensor data
acquisition subsystem

T

Conveyor | Bar code reader | Shunt actuator
Pulse tach

shunt controller

6-6 SEPA, 6/e Instructor’s Guide

start conveyorline

read bar code get conveyor speed

valid bar code invalid bar code

determine bin locatio Get forreject bin

y y

send shunt
control data

get shunt status) (read bar code) Get conveyor status

produce report entry

i conveyor stopped conveyor in motion

Chapter Comments 6-7

FIGURE 5.1
A conveyor —
line sorfing
sysiem Comveyor line
micticn

Coniral
commedtion

B EEEEE

6-8 SEPA, 6/e Instructor’s Guide

class name

/

Box

barcode
forwardSpeed
conveyorLocation
height

width

depth

weight

contents

/

readBarcode()
updat eSpeed ()
readSpeed()
updateLocation()
readLocation()
getDimensiony()
getWeight()
checkContents()

—

/

—

attributes

note use of capital
letter for multi-word
attribute names

operations
(parentheses at end

of name indicate the

list of attributes that the
operation requires)

Software Requirements
—_——

| ewsmmessrn)

4.1 Introduction

In requirement engineering there is a systematic use of principles, technique and
tools for cost effective analysis, documentation and user needs. Both the software
engineer and customer take an active role in requirement engineering.

In this chapter we will discuss the concept of user and functional requirements.
We describe functional and non functional requirements. Finally we will learn how
software requirements may be organized in requirements document.

What is requirement engineering ?

Requirement engineering is the process of

o establishing the services that the customer requires from a system

e and the constraints under which it operates and is developed.

The requirements themselves are the descriptions of the system services and
constraints that are generated during the requirements engineering process.

What is a requirement?

A requirement can range from a high-level abstract statement of a service or of a
system constraint to a detailed mathematical functional specification.

The requirement must be open to interpretation and it must be defined in detail.

Types of requirements

The requirements can be classified as

Software Engineering 4-2 Software

ﬁpes of requireme@

Fig. 4.1 Types of requirements

¢ User requirements

It is a collection of statements in natural language plus description of the SeTvige,

the system provides and its operational constraints. It is written for customers,

e System requirements

It is a structured document that gives the detailed description of the Syste

services. It is written as a contract between client and contractor.

e Software specification

It is a detailed software description that can serve as a basis for design o

implementation. Typically it is written for software developers.

4.2 Functional and Non Functional Requirements

Software system requirements can be classified as functional and non functional

requirements.

4.2.1 Functional Requirements

e Functional requirements should describe all the required functionality or

system services.

system should react to particular inputs and how a

: 3 a 1
behave in particular situation. particular system should

Functional requirements are heavi|

expected u
p sers and the type of system where the software is used

: System re
System services in detajl. ’

For example

Y system in which there
e databases are o]

The customer should provide statement of service. [t should be clear how the

y dependant upon the type of software,

quirements should describe the

A

software
—

Fron
1.

[Y

424/

. is a single interface
N search for, download and print th ection of articles from different

ftware Engineerin
So g 4-3 Software Requirements

—

From this example we can obtain functional Requirements as—

1. The user shall be ab ; o
select a subset fro r: i:f? to search either all of the initial set of databases or

o The system shall provide appropriate viewers for the user to read documents
in the document store.

3 j:l 1;r;1que identiﬁex‘- (ORDER_ID) should be allocated to every order. This
identifier can be copied by the user to the account’s permanent storage area.

4.2.1.1 Problems Associated with Requirements
e Requirements imprecision
1. Problems arise when requirements are not precisely stated.
2. Ambiguous requirements may be interpreted in different ways by developers
and users.
3. Consider meaning of term ‘appropriate viewers’

e User intention - special purpose viewer for each different document type;

Developer interpretation - Provide a text viewer that shows the contents of
the document.

e Requirements completeness and consistency -
e and consistent. Complete means they

The requirements should be both complet
d. Consistent means there should be

should include descriptions of all facilities require
onflicts or contradictions in the descriptions of the system facilities.

no ¢
it is impossible to produce a complete and consistent

Actually in practice,
requirements document.

4.2.2 Non Functional Requirements
ements define system properties and constraints.

m can be : Reliability, response time, storage
f the system can be : Input and output device

e The non functional requir
Various properties of a syste
requirements. And constraints 0
capability, system representations etc.

e Process requirements —may also specify programming language or

development method.
re more critical than functional requirements.

e Non functional requirements a
nts do not meet then the complete system is

If the non functional requireme

of no use.

juswaiinba.
Alojeg

juswalinbay
aAne|siba

Iusweainbai jeuoouny uou 340 sedA) z'y "Bi4

juswsaiinbai
9zIg

juswauinbai
plepueg

Juswalinbaj

juswalinbal
uonejuswa|duw]

Kianijaq

L

_ |

juswaiinbay
eai3

juswalinbal
Aiqesadossyug

luswalinbay
duewiopay

juswsauinba,
Aunigesn

Aljiqepog

Sjuswalinbal
leussyxy

L

Juswaiinbal juswalinbal Juawalinba.
Agersy Aouaioly3

L [

wEwEm::cE
|euoneziuebip

\

1

Sjuawalnb
Jonpoly

g

/

[

EmEm::om:
leuonouny uopn

s?ftware =hgineering 4-5 Software Requirements

Product requirements

Th‘ese'reqmrements specify how a delivered product should behave in a particular
way. For instance: execution speed, reliability.

Organizational requirements

The requirements which

are consequences of organizational policies and
procedures come under this

category. For instance: process standards used
implementation requirements.

External requirements

These requirements arise due to the factors that are external to the system and its

development process. For instance : interoperability requirements, legislative requirements.
In short, non functional requirements arise through
i) user needs
ii) because of budget constraints
ili) organizational policies
iv) the need for interoperability with other software or hardware systems
v) because of external factors such as safety regulations.

Metrics used for specifying the non functional requirements

Property Metric

Speed Events per response time processed transactions
per second.

Size Kilo bytes.

Reliability Mean time to failure. Rate of failure. Occurrence
availability.

Robustness Time to restart after failure. Probability of events
causing failure.

Portability Number of target statements.

4.3 User Requirements

e The user requirements should describe functional and non functional
requirements in such a way that they are understandable by system users
who don’t have detailed technical knowledge.

e User requirements are defined using natural language, tables and diagrams
because these are the representations that can be understood by all users.

4-6 Software Requir&mems
Software Engineering —_

the requirement specifications When

Various problems that can arise 1IN

; . ; JAPE —
~ requirements are given 1n natural languag

Lack of clarity

Sometimes requirements are
should help in clear and precise u

given in ambiguous manner. It is expected that teyy
nderstanding of the requirements.

Requirements confusion

There may be confusion in functional requirements and non functional

requirements, system goals and design information.

Requirements mixture
There may be a chance of specifying several requirements together as a single

requirement.

4.3.1 Guidelines for Writing User Requirements

Apply consistency in the language. Use

. “"shall’ for mandatory requirements

. and “should’ for desirable requirements.

- The text which is mentioning the key requirements sho'uld'b,: hlghllghfed v
Tt _should be

;r_Avoid the use of computer jargon (computer ‘ferﬁﬁﬁ@lbgiéé)':
“written in simple language. e : ;

For example

Consider a spell checking and correcting system of a word processor. The user
requirements can be given in natural language as

1. The system should posses a traditional word dictionary and user supplied
dictionary. It shall provide a user-activated facility which checks the spelling
of words in the document against spellings in the system dictionary and
user-supplied dictionaries.

2. When a word is found in the document which is not given in the dictionary,
then the system should suggest 10 alternative words. These alternative words

should be based on a match between the word found and corresponding
words in the dictionaries.

3. When a word is found in the document which is not in any dictionary, the
system should propose following options to user :

1. Ignore the corresponding instance of the word and go to next sentence.

2. Ignore all instances of the word

Software Engineering 4-7 Software Requirements

—

3. Replace the word with a suggested word from the dictionary
4. Edit the word with user-supplied text

5. Ignore this instance and add the word to a specified dictionary

4.4 System Requirements

e System requirements are more detailed specifications of system functions,
services and constraints than user requirements.

e They are intended to be a basis for designing the system.
e They may be incorporated into the system contract.
¢ The system requirements can be expressed using system models.

* The requirements specify what the system does and design specifies how it
does.

* System requirement should simply describe the external behavior of the
system and its operational constraints. They should not be concerned with
how the system should be designed or implemented.

» For a complex software system design it is necessary to give all the
requirements in detail.

¢ Usually, natural language is used to write system requirements specification
and user requirements.

Why requirement and design are inseparable?

e A system architecture may be designed to structure the requirements;

e The system may inter-operate with other systems and that may generate
design requirements;

® The use of a specific design may be a domain requirement.

4.5 Interface Specification

Sometimes there is already existing system which can be used with the newly
Created software system. This conjunction of old system with new system is called
System interface. In such situation the interfaces of already existing systems must be
specified clearly. There are three types of interfaces that can be defined -

1. Procedural interfaces : These are popularly known as Application
Programming Interfaces (API). Such procedures are intended to offer services
that may be used by calling procedures.

. Software Requirem&“ts
Software Engineering uirementy

4-8

2. Data structures : Data structures are the descripfors ofldatfat.hThey play o
important role in organization of data for given algorithm. The gq,

structures can be passed from one sub-system to another.

This level of specification is used in certaj,
real time applications these kind
describe this interface diagrams cap

3. Representation of data
programming languages like ADA. For
interfaces are often useful. Sometime to

be used.
The interface should be defined in an unambiguous manner but such interfaceg

can be understood only after special training. For example
Interface Hello
void initialize(string S);
string SayHello();

}
This interface will display the message hello on encountering this interface.

4.6 The Software Requirements Document

The software requirements document is the specification of the system.It should
include both a definition and a specification of requirements. It is not a design
document. As far as possible, it should set of what the system should do rather than
how it should do it.

Software Requirements Specification

The software requirements provide a basis for creating the Software Requirements
Specifications (SRS).

The SRS is useful in estimating cost, planning team activities, performing tasks,
and tracking the team’s progress throughout the development activity.

Typically §9ftware designers use IEEE STD 830-1998 as the basis for the entire
Software Specifications.The standard template for writing SRS is as given below.

software Engineering
— 4=9 Software Requirements

Document Title

Author(s)
Affiliation
Address
Date
Document Version

1. Introduction

1.1 Purpose of this document
Describes the purpose of the document.
1.2 Scope of this document

Describes the scope of this requirements definition effort. This section also details

any constraints that were placed upon the requirements elicitation process, such as
schedules, costs.

1.3 Overview
Provides a brief overview of the product defined as a result of the requirements
elicitation process.

2. General Description

e Describes the general functionality of the product such as similar system
information, user characteristics, user objective, general constraints placed on
design team.

e Describes the features of the user community, including their expected
expertise with software systems and the application domain.

3. Functional Requirements

This section lists the functional requirements in ranked order. A functional
requirement describes the possible effects of a software system, in other words, what
the system must accomplish. Each functional requirement should be specified in

following manner
e Short, imperative sentence stating highest ranked functional requirement.

1. Description
A full description of the requirement.

2. Criticality |
Describes how essential this requirement is to the overall system.

3. Technical issues ' '
Describes any design or implementation 1SSu€s invo

requirement.

lved in satisfying this

4-10 Software Requirements ,
—N

Software Engineering

4. Cost and schedule

stem.
Describes the relative or absolute costs of the sy

> EISkS'b s the circumstances under which this requirement might not able to
escribes the

be satisfied.

6. Dependencies with other requirements

Describes interactions with other requ1r_ements.

7. ... any other appropriate

4. Interface Requirements

This section describes how the software interfaces with other software Products or
users for input or output. Examples of such interfaces include library routines, token
streams, shared memory, data streams, and so forth.

e 4.1 User Interfaces
Describes how this product interfaces with the user.

o 41.1 GUI
Describes the graphical user interface if present. This section should
include a set of screen dumps to illustrate user interface features.

e 412 CLI

Describes the command-line interface if present. For each command, a

description of all arguments and example values and invocations should
be provided.

e 413 API
Describes the application programming interface, if present.
e 4.2 Hardware Interfaces
Describes interfaces to hardware devices.
* 4.3 Communications Interfaces
Describes network interfaces.
* 4.4 Software Interfaces

Describes any remaining software interfaces not included above
5. Performance Requirements

Specifies speed and memory requirements.

6. Design Constraints

_ or the desi
limitations. gn team such ag software or hardware

Software Engineering F
= -1

Software Requirements

7. Other non-functiona| attributes

7.1 Security

7.2 Binary Compatibility
7.3 Reliability

7.4 Maintainability

7.5 Portability

7.6 Extensibility

7.7 Reusability

7.8 Application Compatibility
7.9 Resource Utilization
7.10 Serviceability

... others as appropriate

8. Operational Scenarios

This section should describe a set of scenarios that illustrate, from the user’s
perspective, what will be experienced when utilizing the system under various

situations.

9. Preliminary Schedule

This section provides an initial version of the project plan, including the major
tasks to be accomplished, their interdependencies, and their tentative start/stop dates.

10. Preliminary Budget

This section provides an initial budget for the project.

11. Appendices
11.1 Definitions, Acronyms, Abbreviations

Provides definitions terms, and acronyms, can be providec.

11.2 References

Provides complete citations to all documents and meetings referenced.

T

4-12 Software Requ'“mgn 5

Software Engineering N

Characteristics of SRS
s of SRS are

SRS should be made u

4.6.1

Various characteristic
p to date when approp,

o Correct — The ;
requirements are identified.

When the require
an unambiguous SRS.

ke the SRS complete, it should be specified what A

Unambiguous ments are correctly understood then only
e Una -
is possible to write

e Complete - To ma
software designer wants to crea
It should be consistent with reference to the functionalitig

te a software.

e Consistent —
identified.
e Specific - The requirements should be mentioned specifically.

e Traceable — What is the need for mentioned requirement? This should be

correctly identified.

4.6.2 Example of SRS

Software Requirements Specification
For
Attendance Maintenance System

Prepared by Anjali
December 1, 2007

Release 1.0
Version 1.0
Table of Contents ‘
1. Introduction ...
1 1 Purpose .. 1
1.2 Scope . 1
1.3 Overview ., . . 1
2. General Description R R O) 1
3. F 2_'1 User Manual . . | e s 1
+ Functional Requirements S l
30 Description, T L

—

oftware Engineering
Sl 413

—_— Software Requirements

3.2 Technical Issyeg

4. Interface Requirements ;
4.1 GUI . 2
4.2 Hardware Interface ;
4.3 Software Interface . ;
Performance Requirements) i
Design Constraints . .. 4
Other Non-functional Attributes . . 4
7.1 Security . 5
7.2 Reliability . 5
7.3 Availability 5
7.4 Maintenability 5
7.5 Reusability. 2

8. Operational Scenarios . 5

9. Preliminary Schedule . B

1. Introduction

1.1 Purpose

This document gives detailed functional and non functional requirements for
attendance maintenance system. The purpose of this document is that the
requirements mentioned in it should be utilized by software developer to implement
the system.

1.2 Scope

This system allows the Teacher to maintain attendance record of the cla‘sses to
which it is teaching. With the help of this system Teacher should be in a p051t.1on to
send e-mail to the students who remain absent for the class. The system provides a

cumulative report at every month end for the corresponding class.

1.3 Overview

This system provides an easy solution to the Teacher to keep track of student

attendance, and statistics.

2. General Description .
i laces the traditional, manual attendance
i maintenance system rep
. tThlsbatteI:'ia}?Cj lot of paper work will be reduced. The Tgacher shoul:. ak??et 1:(:
V)i,es;mh); o I;h of a student along with his attendance in his Laptop. This is
photogra

4-14 Software ReqUirame

Software Engineering

other feature is that Teacher can be alloweq t
m should produce monthly atten, d“‘iit

-mail/warning to the Stuzw
tu

ature of this SYSt;rr:ir:S The syste
. d at desire an e

artnCUIa; I(':fC(t)lflere should be facility to send

t. n

he class.

primary fe

repor :
remaining absent in t

Attendance View attendance
Take attendance _ Maintenance -
System

Monthly repoﬂ&

Teacher

E - mail to student

Fig. 4.3

Every Teacher should have Laptop with wireless internet connection. A Teacher
may teach to different classes and a separate record for the corresponding classes
should be maintained.

2.1 User Manual

The system should provide Help option in which how to operate the system

should be explained. Also hard copy of this document should be given to the user in
a booklet form.

3. Functional Requirements

3.1 Description

. present or absent depending upo"
mails to absent students. A statistical report
mulative report whenever required.

his presence. The system should send e-
should display individual’s report or a cu

3.2 Technical Issues

The system should be implemented in VCq4

software Engineering

4-15 Software Roqulremoents

SSRRPIS— —

4. Interface Requirements
4.1 GUI
GUI 1 Main menu should provide

options such as File, lidit, Report, Help

GUI 2 ¢ In File menu one can or
¢ can create a new record file or can open an existing

record file. For e, i o
. \-i._-\: ‘lnm example : It file SECOMP SEMI 07 is opened then we

. \‘A .i o 3 (‘\&‘L]lll‘\\ l‘(\L‘\\l'L‘l (\" Sl" L\()'\'ll,tl.l‘“'\' ('L\SH “‘ y(-m- 2““7 “nd 5
record tor semester-1 can be viewed

GUL 3: The display of record should be

Photo < Student Name > ;I

Fig. 4.4
The photo can be clicked to mark student present for particular class. The
e-mail button can be clicked to send e-mail to the student being absent.
GUI 4 : Report option should display statistical report. It may be for particular
student or for the whole class.
GUI 5: Help option should describe functionality of the system. It should be
written in simple HTML.

4.2 Hardware Interface
Hardware Interface 1 : The system should be embedded in the laptops.

Hardware Interface 2 : The laptop should use wireless Ethernet card to send
e-mails. These Laptops should be the clients of

departmental database server.

4.3 Software Interface
Attendance maintenance system.

The attendance database should be transmitted to
departmental database server.

Software Interface 1 :
Software Interface 2 :

E-mail message generator which generates standard

Software Interface 3 :
message of absence.

Software Interface 4 : Report generators

Software Requirements
—

Software Engineering

5. Performance Requirements
rrently on multiple processors between the college

This system should work concu
hours. The system should support 50 users.
The e-mail should be sent within one hour after the class g

The system should support taking attendance of maximum 100 students per clags.

ets over.

6. Design Constraints
The system should be designed within 6 months.
7. Other Non-functional Attributes

7.1 Security
The teacher should provide password to log on to the system. He/she should be

able to see the record of his/her class.
The password can be changed by the Teacher by providing existing password.

7.2 Reliability
Due to wireless connectivity , reliability can not be guaranteed.

7.3 Availability
The system should be available during college hours.

7.4 Maintenability
There should be a facility to add or delete or update Teachers and students for

each semester.

7.5 Reusability

The same system will be used in each new semester.
8. Operational Scenarios

There will be student database, Teacher database. The student database will
contain students name, class, attendance, e-mail address, address, phone number.

The Teacher database will contain Teacher’s name, classes taught, e-mail address,
phone number.

9. Preliminary Schedule

The system has to be implemented within 6 months,

software Engineering 4-1
—_— -7 Software Requirements
4.6.3 Who are using SRS?

The SRS is the most important software

ing Fi document that i .
stakeholders. Following Fig. 4.5 illustrates the ty ent that is needed by various

pical users of SRS.

r

_ The requirements ‘SpeleIEd by the ‘
- Customer are consolidated in the SRS.

{_‘-'Customers can suggest changes to the
requlrements is needed

_ Customers
orend - users

:v‘::pfc');eclt . - mainly for pianned the project, The.
- managers | development plan can be prepared
: J __usmg the requsrements gwen in SRS

While deve!obmem‘s‘tfhé ‘Syé?ter‘ﬁ‘it is
System ~ necessary to understand it first, This

developers

Test
engineers

; To understand the syste ompletely
System for maintenance purpose, the SRS s
maintenance used by maintenance engineers.

engineers

Fig. 4.5 Users of software requirement specification

ineering process.
irements enginee
chapter we will focus on requ

Review Questions
? Give different types of requirements with suitable example.

engineering
le example. Discuss the problems associated

ments with suitab

1. What is requirement »

2. Explain functional require

these requirements. of nion _functional

function requirements 7 Give various types

3. What do you mean by non

requirements.

' uirements ?
t the metrics used for non ﬁmchonal req
4. What are ,

System Models
P |

6.1 Introduction

As per our discussion in i
cauirements i previous chapter, the most common way to specify the
user req 518 a natural language. It is the simplest method of tioning th
requirements of the system. But at th i P oc O TenOmRe
4 the use of natural 1 . at the same time there are many problems associated
wi : ura ar.lguage. Hence another method has came up to specify the
user requirements. That is creation of System models. The system model is a
graphical representation that is used to describe various processes of the system, the
type of input and output of the system. These system models not only specify the user
requirements but they also serve as an important element in analysis and design
phase. We can develop the system model using different perspectives and use of these
perspectives gives the categorization of system models into different models -

e Using External Perspective context model of the system can be developed.

o Using Behavioural perspective behavioural model of the system can be

developed.
e Using Structural perspective data model of the system can be developed.

Thus representation of the system should depict salient characteristics of the
uss how to use different perspective of the system

system. In this chapter we will disc
And hence context model, behavioural model and

and how to create different models.)
data model can be understood with the help of some examples. Along with these

models we discuss one more important system model called object model which is
useful for object oriented systems. Let us start our discussion on system models by the

very important concept i.e. analysis and designing.

Software Engineering

System M°de|
\

6.2 Analysis and Modelling

Analysis modelling is a technical representa

tion of the system.

™
—

e The software engineer (basically called as analyst) builds the model using h

requirements elicited from customer.

e In analysis modeling a combination

of text and diagrams are used

: i able manner.
represent the software requirements in an understand

e By building analysis models
inconsistencies and omissions.

e Analysis Model Objectives —

it becomes easy to uncover requiremen

e To describe what the customer requires.

e« To establish a basis for the creation of a software design.

« To devise a set of valid requirements after which the software can be built.

Analysis Modeling Approaches —

Analysis Modelling Approach

Structured Approach

Object Oriented Approach

The analysis is made on data and processes
in which data is transformed as separate
entities.

The analysis is made on the classes and
interaction among them in order to meet the
customer requirements.

Data objects are modeled in a way in which
data attributes and their relationship is defined
in structured approach.

]

Unified modelling language and unified
processes are used in object oriented
modelling approach.

B

e Team chooses one approach and makes use of all the representations from it
But the effective technique is to choose best from both the approaches.

The model representation should be such that the best model of softwar

requirements should be given to stakeholders. And this model should help in

building software design.

6.3 Context Model

bouiZZ:?:: E:zleociele :3:1 adgprr?).hl.cal representation of the system in which the systeﬂ:
in which system I;’S woik: 1‘sN) the \m-oc.iel which represents the system environﬂwﬂt
ey ing. While _dgmdmg the environmental factors of the systef“'

y muc . necessary to take decisions on certain aspects such a 1l cost of the
system and time required to analyse such system. This decision shjucl);e;: ade if the

ware Engineering

S 6.3
carly Stage (preferably \ System Models

1
exampl€ der e X c
nsider the Inventory C
n E: sider ! 'y Control System for Which the context model of th
) Odel of the system

Accouy nting
System

Maintenance
System

Invqntqry Inventory
monitoring Control Report
system System gene{ation
system

Inventory Account
database database

Fig. 6.1 Context model for Inventory Control System

First of all using the requirements of the system the system boundaries are
decided and the dependencies of the system are specified in order to define the
system environment. In Fig. 6.1, the system boundaries are clearly shown and the
environmental factors are defined. The Inventory Control System is connected to
various systems such as Inventory monitoring system, Ac.counting system., Rep_ort
generation system and Maintenance system. This is = a-rchltectural model in which
an abstract representation of inventory control system is given

Thus context models are the architectural models in which .environment of the
system is shown. The relationship that exists with other systems is sll'tlow}r: bUtdE?i:l(:;
of these relationships is not mentioned in the context model. All these

' h
i : I i ts of the system. To detail out suc
r913f10n8h1ps help in fifieling i n conjunction with this. The

- an be used i
“rchitectural model some process mode’ € stem processes. The order of

i i fs
Process model is again a graphlcal representatlor.l ho thyhei D notias ol
€Xecution of various events can be understood with the help

draw a process model
For example — For the same Inventory Control System we can . p

% shown by Fig. 6.2.

|

Software Engineering \odﬂt

- - -

Order il g
Order specification. * [Estimate

it the specification Validate 1 ” cost of
Speci y order J - items
order of items é7
/ -

-7 Cost |
Suppliers _
i Specification

list
’ Find)
Suppliers suppliers Choose
database list supplier

J

- - -

Cost + supplier 4
order Specification

|
|
]
, |
: |
: |
; I
X |
' |
: |
i |
| Place the '
» order of :
: items J [
: L [}
Order of !
System : items :
boundary , '
|
: |
X i
X |
| |
; |
| 1
i]
X |
| |
X |
A |
: |
1
)
|
\

the system)

are done within
Delivery

_j
Check the
delivery

(These activities Accept the
order delivery

Inventory
1 database |+

-

ﬁ
Update !

. inventory !
. Account _

~ database ’

-
--.____-—-————-—-——-————————————
-—— - - -

Process model

Fig. 6.2 Process model
6.4 Behavioural Models

* Behavioural models are used to d

escribe the overall behaviour of a system
There are two types of models tha

t depict the behaviour of the system

[Data flow mode|

—— State chart diagram

System Models

application.

Let us discuss these models in detai] —

6.4.1 Data Flow Diagram

The data flo i : .
e w dlagrams depict the information flow and the transforms that
are applied on the data as it moves from input to output.

The symbols that are used in data flow diagrams are -

Process

Data store

Flow of data (may be input

——
data of output data)

External
entity

The data flow diagrams are used to represent the system at any level of
abstraction.

The DFD can be partitioned into levels that represent increase in information
flow and detailed functionality.

A level 0 DFD is called as ‘fundamental system model’ or ‘context model’. In
the context model the entire software system is represented by a bubble with
input and output indicated by incoming and outgoing arrows.

Each process shown in level 1 represents the sub functions of overall system.

The number of levels in DFD can be increased until every process represents

the basic functionality.
As the number of levels gets incr
The Fig. 6.3 shows the leveling in DFD.
continuity must be maintained.

eased in the DFD, each bubble gets refined.
Note that the information flow

i System m,

dy|
Software Engineering N
Level 0 DFD
0
x i Z Entity B
Entity A Information
y system
! i g
! \
! T e R
’/, V=== ‘\\
Level 1 DFD ’ \

| 1 “

I \

l \

A — ~\ Process ‘
Entit
y P . Entity B
y 2 3 :
- h -
_D_a_tistoi Process A W
\\
\\
I \\
:
| \\
I
Level 2 DFD |

I

f Data store

Level 3 DFD _»# -

RN

~
N
w
———
I}

/
-

e - = - ——

Fig. 6.3
e 9 Levels of DFp

software Engineering

— 6-7

6.4.1.1

D System Models

Control Flow Diagram

grams shq
an showns \«Cfl the same Processes as in data flow
g data flow they show control flows

grams show how events flo

diagrams but rather th

The control flow dia

shows how externa] W among processes. It also

Instead :
" t_Of Tepresenting control processes directly in the model the
speciiications are used to represent how the processes are controlled.

Ther.e. arc? two commonly used representations of specifications : Control
Specification (CSPEC) and Process Specification (PSPEC).

The CSPEC is used to indicate —
1. How the software behaves when an event or signal is sensed.
2. Which processes are invoked as a consequence of the occurrence of event?

The PSPEC is used to describe the inner workings of the process represented
in a flow diagram.

When a data input is given to the process a data condition should occur to
get the control output. For Example

See Fig. 6.4 on next page

6.4.2 State Chart Diagram

To understand the de

Consider an elevator for n
such elevator can be given as

1. There is a set

2. There is another

sign of state chart diagram consider following example —

floors has n buttons one for each floor. The working of

of buttons called ‘elevator buttons’. If we want to visit a
levator button for corresponding floor 1s pressed. It
d elevator starts moving to visit the desired floor.

hing to destination.

set of buttons called “floor button” .When a perso:\ cl;r;
visit another floor then the floor button has to

m c & . -]] b} 1 : .

ired floor.
cancelled when the elevator reaches on the desire

particular floor then the e
causes an illumination an
The illumination is cancelled on reac

particular floor want to

6.8 System M

Software Engineering
> —

CFD

DFD

Obtained
temperature

/\ Event gets
generated

Check and

Ched\jearrt1 | Converted convert Pointer
el temperature
temperature P temperature
/ S -~ }iliOVe
e/np -
Maximum
temperature
The CSPEC .
FSPEL tells us to S'%’;:'
do when an g
generated

if obtained temp > max temp event occurs
set above_temp = TRUE
else
set above_temp = FALSE
begin
temp_conversion algorithm;
compute converted temp;
end
end if

Fig. 6.4 Occurrence of data condition

3. When an elevator has no request it remains at its current floor with its door
is closed.

The state chart diagram is as shown in Fig. 6.5.

goftware Engineering
—_—
System Models

Enter eleva'or
door open

\

Request for Press elgvator button
floor visit button illuminated

from elevator

Elevator moving

in desired
Floor button pressed = direction
ilumination
Done
no illumination
e[?:vqaligftfrfgrrn - Reached at idle

destination door closed

floor

Fig. 6.5 State chart diagram

6.5 Data Model

« Data modelling is the basic st
the data objects are examined

main is focused. And a

ep in the analysis modelling. In data modelling

independently of processing.
d model is created at the customer’s level
e The data do

of abstraction. -

. i e ano
a a

- ,

Software Engineering \d‘h

5. ects, Attributes and Relationships

6.5.1 Data Obj

Data object : It can be any person, organisation,
device or software product that produces
or consumes information

Elements
of data model

i

Attributes : These are used to Relationship : These represent
name data object instance how data objects are connected
to describe characteristics or to one another

to make reference to another
data subject object

Fig. 6.6 Elements of data model
What is data object?

* Data object is a set of attributes (data items) that will be manipulated within
the software(system).

e FEach instance of data object can be identified with

the help of unique
identifier. For example: A student can be identified by us

ing his roJ] number.

* The system can not perform without accessing to the instanceg of object

Each data object is described by the attributes which themselveg are data items

Data object is a collection of attributes that act as an asp

ect, chamcteristic, quality, or
descriptor of the object.

T |

oftware Engineering
S/———'—_ 6 = 11

System Models

At
Make

Fig. 6.7 Object

The vehicle is a data object which can be defined or viewed with the help of set of
attributes.

Typical data objects are

o External entities such as printer, user, speakers

o Things such as reports, displays, signals

e Occurrences or events such as interrupts, alarm, telephone call
e Roles such as manager, engineer, customer

° Organizational units such as division, departments

e Places such as manufacturing floor, workshops

e Structures such as student records, accounts, file

What are attributes?

Attributes define properties of data object
Typically there are three types of attributes —

1. Naming attributes — These attributes are used to name an instance of data
object. For example : In a vehicle data object make and model are naming

attributes.

2. Descriptive attributes — These attributes are used to describe the
characteristics or features of the data object. For example : In a vehicle data

object color is a descriptive attribute.

3. Referential attribute — These are the attributes that are used in making the
reference to another instance in another table. For example : In a vehicle data

object owner is a referential attribute.

6-12 System m,

Software Engineering \deh

What is relationship?

S l)) S S i 3 ' 1 *CLS. or exa
‘ S) 2) 1 OD S l—* Y

ns y O " A ¢ y is §S n bL‘l()W
]‘lll\ I‘t‘l.lti& l‘l‘hi} l l\t\!\/(‘(‘l] a Sh()l")kccijcl F- l]d a t() 1S as Sl]()w

Orders
Sells
Toy Shows

Shopkeeper

Stocks

Fig. 6.8 Relationship
Here the toy and shopkeeper are two objects that share following relationships-
* Shopkeeper orders toys
* Shopkeeper sells toys
* Shopkeeper s'hows toys.

* Shopkeeper stocks toys.

5 6.5.2 Cardinality and Modality

| Cardinality in data modelling, cardinality specifies how the number of occurrences of one
object is related to the number of occurrences of another object.

* One to one (1:1)- one object can relate to only one other object.
* One to many(1:N)- one object can relate to many objects.

. .
Many to many (M:N) - some number of occurrences of an object can relate to
some other number of occurrences of another object

relationship.

Modality of a relationship
relationship to occur or the relati

occurrence of the relationship is mandatory

software Engineering 6.

13
- \ System Models

Example

Cardingljty : Single Customer i
waliting for PUrchase Cardmality : Many purchase
actions is possible.

Customer is provided with Purchase
action

Modality : For purchase action Modality : It is optional,
customer is must there may not be
(modality 1) (ar?])éé):lli’t(;hg)srng

Fig. 6.9 Cardinality and modality
6.5.3 Entity Relationship Diagram

* The object relationship pair can be graphically represented by a diagram
called Entity Relationship Diagram(ERD).

* The ERD is mainly used in database applications but now it is more
commonly used in data design.

* The ERD was originally proposed by Peter Chen for design of relational
database systems. '

* The primary purpose of ERD is to represent the relationship between data
objects.

e Various components of ERD are -

Entity

 Drawn as a rectangle.

* An entity is an object that exists and is distinguishable.

e Similar to a record in a programming language with attributes.

Relationship

* Drawn as a diamond.

* An association among several entities.

* Relationships may have attributes.

* Relationships have cardinality (e.g., one-to-many)
Attribute

* Drawn as ellipses. |
e Similar to record fields in a programming language.

i domain
Each attribute has a set of permitted values, called the

Primary key attributes may be underlined.

A

Software Engineering

6-14

System

0d@|
N

is i as follows.
The typical structure of ER-diagram 1S illustrated

G _

Notations used in ER diagram

Entity

Entity

Entity

Attribute

When this entity is d
it is called weak entj

Relationship

Entity

Relationship

Entity

@@

Fig. 6.10 ER diagram

Weak Entity

It is an object and is distinguishable it jg similar to record.

ependant upon some another entity then

The attributes are Properties or characteristics of an entity.

goftware Engineering

6-15

_—
—

-
(Attrlbute’\

- -

Relationship

— System Models

Derived attribute

It is i : :
a kind of attribute which ig based on another attribute.

Key attribute

an unique attribute representing

distinguishing characteristic of entity. Typically primary key of

record is a key attribyte,

Multivalued attribute

A multivalued attribute have more than one value.

Relationship

When two entities share some information then it is denoted
by relationship.

Notations to show cardinality

One to one

One to many (must)

N

Many

One or more (must)

YV L

One and only one (must)

Zero or one (optional)

QL

Zero or many (optional)

0

Fig. 6.11

6-16 System MO«.,
i

Software Engineering

Bamete ! her and courses. Also
{ i er a . S .
Draw an ER diagram for the realtiohship of Teac pecif,

association, cardinality and modality.

Ans. :
Specialization_
Teac“e(/\() info
Teacher
lé\Cardinality
N Modality : Must
Conducts
/ Modality : Optional
Course
Course_
@ syllabus
Fig. 6.12
Association

In the above ER dia
sram, a relatiohship conducts " s
associated with “course” by conductmg W p is introduced. “Teacher”

Cardmallty

Many Teachers can conduct the single course

Modality

are Engineering 6.
ﬁt‘”____, 7 System Models

gxample 2

Following ERD represents the relationship between Customer and banking system

(amount’ acc.no
tion |4 1
Transaction account M z;:l::rgi:tt
c

1
@ branch
acct,
M

oo /\ M Branch

borrow

Qoan o) Camoundd

Fig. 6.13 ERD

Example 3

Technical Publication (A well known publishing company) publisbe.s Er}gin?ering
books on various subjects. The books are written by authors wbc? .spec1ahze'z in his/her
Subject. The publication employs editors who take sole respon51b11.1ty of edl’cl'nig1 oz.et or
mMore manuscripts. While writing a prarticular book, ea?h author 1nteractde1t. edi ?;
But the author is supposed to submit his work to pu-bhsher always. Ir;‘l order 1mcpi1;3ist
,COmPEtitiveness, the publication tries to employ a variety of authors who are spe

" More than one subject.
Draw the E-R diagram for above described scenario.

6-18 System Mo

Software Engineering \deh

Books

Technical]
Publication

Specialized
in

Editor Author

Fig. 6.14

The data modelling and entity relationship diagram helps the analyst to observe
the data within the context of software application..

6.6 Structured Analysis

* The structured analysis is mapping of problem domain to flows and
transformations.

* The system can be modeled using :
o Entity Relationship diagram are used to represent the data model.

o Data flow diagram and Control flow diagrams are used to represent the
functional model.

¢ Along with system modeling the specification can be written for the system
using

1. Process Specification 2. Contro] Specification.

6.6.1 Designing Entity Relationship Diagrams

iterative manner. Following guideline is used while drawing the ERD

1. During the requirement elicitation process

collected in such a way that we can evolve j
external entities for System modeling

the requirements should be
nput, output data objects 2"

2. The analysis and customer

should be j . ; ionship
between the data objects. ™! @ position to define the relation

Engineering)
Software 6-19 System Models

3, When ever a connection between daty ob

relationship pair must be established. Thus iter
the objects must be established.

jects is identified the object
atively relationship between all

4. For each object relationship pair the cardinality and modality is set.
5. The attributes of each entity must be defined.
6.
7.

The entity relationship diagram is formalized and reviewed.

All the above steps are repeated until data modeling is complete.

6.6.2 Designing Data Flow Diagrams

o The data flow diagrams are used to model the information and function

domain. Refinement of DFD into greater levels helps the analyst to perform
functional decomposition.

o The guideline for creating a DFD is as given below —

1. Level 0 DFD ie. Context level DFD should depict the system as a single
bubble.

2. Primary input and primary output should be carefully identified.

3. While doing the refinement isolate processes,data objects and data stores to
represent the next level.

4. All the bubbles (processes) and arrows should be appropriately named.
5. One bubble at a time should be refined.

6. Information flow continuity must be maintained from level to level.

* A simple and effective approach to expand the level 0 DFD to level 1 is to
perform “grammatical parse” on the problem description. Identify nouns and
verbs from it. Typically nouns represent the external entities, data objects or
data stores and verbs represent the processes. Although grammatical parsing
is not a foolproof but we can gather much useful information to create the

data flow diagrams.
Example 1 DFD for library information system.

A student comés to a library for borrowing book. The student makes the book
quest by giving book title and author name. The student has to submit his library
Qrd to the library. Sometimes student may simply give topic and demand for a book
(For example “just give me book on data structure”). The library information system
Maintains Jist of authors, list of titles, list of topics. This system also keeps record of
% on which books are available with the system. This system maintains
Mormation about shelf number on which books are located. Finally the list of

*Manded book should be displayed, on the console for ease of selection.

The first level of DFD can be

System
Software Engineering 6-20 y Mode|g

—3
Solution :

In this DFD the whole system is represented with the help of input, processing
and output. The input can be -

i) Student requests for a book hence Book request.

ii) To show identity of the student he/she has to submit his/her Library card,
hence Library card. The processing unit can be globally given as

Library information system
The system will produce following outputs-

i) The demanded book will be given to student. Hence Book will be the output.

/m
Book request ;)
> Library Demanded i
Student Library card -~ Information . g('f(ﬁlay of
t - System book Info

Book

Fig. 6.15 Level 0 DFD (Context level DFD)

ii) The library information system should display demanded book information
which can be used by customer while selecting the book.

Level 1 DFD
= 300\" Book selves
Book request
Student Library card Delivery Adthor (5) st of
- of Book Authors
[
{ Book i
List of
Titles
. demanded
TOplC Book
List of topics Info
Display of
Book request Boc?k g
(By topic) ‘
Bk Demanded
: . Beok
(Based on topic) by Topic Info

Fig. 6.16 Level 1 DED

ware Engineering

soft 6 -21
. System Models
. , t 3 .
In this level, e system is exposed with more processing detai
that need to carried out are - 5 ez, The processes

i) Delivery of Book.
ii) Search by Topic.

These processes require certain information such as List of Authors, List of Tit]
, List of Titles,

List of Topics, the book selves from which books can be located. This ki
information is represented by data store. s kand of

Level 2 DFD
1
Book request ' Book
Student i Get
-— book Book shelf

Shelf number
and book info/no.

Find Authors List of
book - Authors
position Titles
List of
) Titles
Book title
Update list Book titte _ Listof
of borrowed and student borrowed books

books
name

Demanded
book

Display of
Book

Fig. 6.17

Out of scope : The purchasing of new books/replacement of old books or charging
a fine all these maintenance activities are not considered in this system.

Example 2 DFD for food ordering system.

A customer goes to a restaurant and orders for the food. The food order is noted

down carefully and this order is sent to kitchen for preparing the required food.

; . System Mogq
Software Engineering 6 -22 - Moder,

This restaurant has to manage one housekeeping department W'Nhlch mac;nt.ams solg
items and inventory data. The daily information about solc.i 1’temsh and invenoy
deplition amount is used to generate a management report. Finally this managemep,

report is given to restaurant manager.

Level 0 DFD
m
Orders for ",
| the food \
Food -)
Customer ordering Food order Righen

L Receipt

9nage Rest t
Mme estauran
r n

Port : Manager

Fig. 6.18 Level 0 DFD (Context level DFD)

In this level, the system is designed globally with input and output. The input to
Food ordering system are -

1. As customer orders for the food. Hence food order is an input.
The output to food ordering system are -
1) Receipt.
2) The food order should be further given to kitchen for processing the order.

3) Bill and management report is given to restaurant manager.

Level 1 DFD

In this level, the bubble 0.0 is shown in more detail by various processes. The
process 1.0 is for processing an order. And processes 2.0, 3.0 and 4.0 are for
housekeeping activities involved in food ordering system. To create g management

used two data stores in this DFD -
1. Database of sold items

2. Inventory database.

software Engineering

——

Database of sold

items

PR

6-23
— System Models
Orders for R
Customer food
Processing of £ood order Kitchen
1 an order
Receipt
\——‘
m Sold [\
items 30
Usgs:s t?lzld Inventory f Update
data inventory file
Formatted
sold item data Formatted _ Inventory
inventory data ~ database

K\

Info. about daily sold items ;/ Generate

Level 2 DFD :

and amount

& management

Info. about daily inventory

report depletion amount
Management | Restaurant
report manager

Fig. 6.19 Level 1 DFD

Customer Get an

“Processing of an order” is shown in detail.

\ Food order

Kitchen

4

order
Orders for

food '\

Food
order

Receipt f Prepare the

bill

Fig. 6.20 Level 2 DFD

Restaurant
manager

System M
Software Engineering 6 - 24 y %

Level 3 DFD : In this DFD we will elaborate “Generate management repor.t” activi

in more detail. For generating management report we have to access sold items daty
and inventory data. Then aggregate both solid items data and m\.fentory data. Toty
price of each item has to be computed. Then from these calculation a managemeny
report has to be prepared and given to the restaurant manager. These details can p,

shown in this DFD -
TN

Acqess sold Inventory depletion Inventory
Info about daily sold items 't:r’]‘zjs - r——— database
and amount

inventory data

Inventory

items data

4.2

Aggregate
inventory
data
and sold items

Inventory and
sold items list

Compute the
total price
of each item

Inventory and sold

items list
y
Prepare
manag?emenl Management | Restaurant
report report manager

Fig. 6.21 Level 3 DFD

J

qware Engineering

0
5//" \ SyStem Mode|s

are boo

dmaﬂded from publishers directly.
:

/o0 \

Places Purch
il order "] Books order urcd S
ustemmer Shippin processing ‘order)
< ote 9 system ¢Shlpment Publisher

Fig. 6.22 Level 0 CFD

Now, we will do more detailing for order processing when an order is received by
the system, it will be first verified using the books database. Credit rating will be
decided by checking customer details (i.e. whether the customer is regular customer
or whether he is new). For submitting a batch of orders we have to maintain pending
orders list as well. There may be the order for books which are published by different
publishers, in such a case database for different publishers need to be maintained by
the system. This list of purchase orders is maintained by the system and then after
"ifying the shipment a shipping note will be given to the customer. The level 1

Yomposition is as shown in Fig. 6.23.
We can further decompose the system by elaborating the process Assemble o

semble order we

rder.

* First get details of total copies per title.

i i ublishers.
* Then prepare purchase order accordingly for corresponding p

Send these purchase orders to publishers.

——

Software Engineering 6 - 26

Places m

Verification
of order

Customer
]

Credit
ratings

Order

L
Pending order

Batch of
orders

Assemble order

Purchase
order

Shipping
note
[}
List of
corresponding
publishers
Publishers

y

Purchase orders

Verify
shipment

Fig. 6.23 Level 1 CFD

* These purchase order details should
level 2 CFD for these details.

Books Info.

System M°de|s
—h

Customers details

Publisher

be stored in the system. Let us draw

T ———————————

QU =Y

— System Models
Pending orders

Batch
of orders

2.1

Get total copies
per title

Purchase

Prepare purchase Publisher

order order
List of
corresponding
publishers
Publishers
2.3
Store
P.O. details
Batch of
orders
Y
Purchase orders
Fig. 6.24

Example 4

i king for a hotel, by

customer can make online booking
: h as type of room (AC/Non AC/One
f stay. The system then selects a
] is found then the

In a hotel reservation system,
SPecifying the accomodation requirements suc
bed/Twg bed), total number of rooms, duration o h a hote
Sitable hotel as per customer’s requirements. If such a e aalcula
availability of rooms in that hotel is checked. The chafgets mer. If the customer is
Selecteq requirement and these are acknowledged to the customer.

: the reservation.
Sat; . m then he confirms .
ahsfaCtorY about the selection made by the SyEte onding hotel. Design

Software Engineering 6-28 System
0.0
; Reservation
B°°k‘,n Online hotel Tatais >
Customer details reservation Hotel
system
Charges
Fig. 6.25 Level 0 DFD
m
Booking f ~__ Customer
i i Processin details
Customer details requestg
[M
Charges o
Room , time, Hotels details
charges, available
Suitable info.
details
Reservation Confirmation \ Reservation
details of ——~+{ Hotel
reservation details
Fig. 6.26 Level 1 DFD
Customer Accept Customer details
request

Booking details

Hotel name

—

Check Room types
-

Hotels' detail

availability

Availability

-

Booking details

Calculate Charges

charges

Charges

T

e Engineering
56,3 Designing °°"‘f°' FM

, There are certain applicationg whic

o A graphical model used to re

res
data flow model is called COntp ent the contrg

. rol flow model.
o The following guideline is ugseq while drawi
mn

List all the sensors that can be read

I information along with the

g the control flow diagrams.

List all the interrupt conditiong
List all the data conditions.

List all the switches actuated by the operator

Use noun/verb parsing technique to identify the control information.

S I & W o e

Describe behaviour of the s : e
ystem by identifying the states. Defi
transition between the states. e efine the

7. Avoid common errors while specifying the control

Rules for designing DFD

1. No process can have only outputs or only inputs. The proces must have both
outputs and inputs.

=

Fig. 6.28]
- i
description can be idennﬁed as processes
m

2. The verb phrases in the proble
the system.

3. There should not be
This flow should 8° t

nd external entity.

es a
a direct flow between data stor

Software Engineering

NS
"\

Fig. 6.29

Fig. 6.30

4. Data store labels should be noun phrases from problem description.

5. No data should move directly between external entities. The data flow shoul
go through a process.

N\ ~

Source U Sink

Source Sink

Fig. 6.31

6. Generally source and sink labels are noun phrases.

d
e : tem &
7 Interactions between external entities 1s outside scope of the SY°

therefore not represented in DFD.

I To— Jetio™
to a data store is for updation/ insertion/de e

8. Data flow from process e

: oving O
9 Data flow from data store to process 15 for retrieving ©

information.

10. Data flow labels are noun phrases. from problem description:

ftware Engineerin
Sott¥ = 6-31

6.7 Data Dictionary System Models

The data dictionary can be defined as an o

. ,) rganized collection
the system with precz§e and rigorous definitions so that user and :f S‘:g the data elgments of
common understanding of inputs, outputs, components of Ztorfe'; anulgst will have q
an

calculations. intermedinte

The data models are less detail hence there is a need for data dictionary
Data dictionaries are lists of all of the names used in the system models.

Descriptions of the entities, relationships and attributes are also included in
data dictionary.

Typically, the data dictionaries are implemented as a part of structured
analysis and design tool

The data dictionary stores following type of information

Name Description
Name The primary name of data or control item, the data store or
external entity.
Alias Other name used for the Name
Where-used or how is It describes where the data or control item is used. It also
used describes how that item is used(that means input to the process,

output to the process)

The notations used in data dictionary are

Data construct Notation Meaning
Composition = Is composed of
Sequence + And
Selection [1] Or
Repetition { Yy Repetition for n times
() Optional data
Lt Commented information

For example :

”
: item “passenger
Consider the some reservation system. The data P

in the data dictionary as

can be entered

Software Engineering 6 - 36—'

6.9 Structured Methods

Applying the structured methods means designing different models
that particular system. Various structured models can be Context mod presemg
models, Data flow diagrams, State chart diagrams, Entity relationship dia els, Procw
models. The structured modelling provides the systematic frameworlfrims' biecup
modelling as a part of requirement elicitation and analysis. Along with th:) SYstey,
documentation is essential in order to provide line certain guideline :models
development. Not only this use of CASE tool support also helps to generate 1, otey
code generation from the system model. ePorts

%
¥
v §
‘é
i
B
E
i

to Te

Drawbacks of structured methods -
1. Non functional requirements can not be represented effectively us;
structured methods. i

2. It is hard to predict whether the structured methods that are applieq to‘
particular problem are suitable for solving that problem or not. Even it ig
possible to decide whether the structured method is suitable for particy,
environment or not.

3. Sometimes too much documentation hides the basic requirements of t
system. Unnecessary detailing is done in structured methods.

4. The system models are represented in more detail so casual user can not
understand the system because he gets lost in the unnecessary details,

Thus in this chapter we have discussed various ways by which the system can be
graphically modelled.

Solved Exercise

Q.1 Compare fzmctionnl and behavioural models.

Ans. :

Functional model Behavioural model
: stefm

The functional model depicts all the essential The behavioural model represents how SY
functionalities of the system. behaves. e
) : b stall

The functional model is represented by data The behavioural model is represented y
flow and control flow diagrams. chart diagrams. -

per ol
The state chart diagram has some nuM

states and transitions. PR

' i he absuad
| ' ' [i havioural model gives !
| diagram gives detailed scenario The be
i gs to be developed. representation of the system

The DFDs can be represented by levels.

The f .
of system which ha

Software Engineering 6-38 System Mogq
Q.4 Differentiate data flow diagram and state transition diagram. {
Ans. : ;}

Data flow diagram State transition diagram\1 |

Data flow diagram is a graphical representation | State transi.tion diagram is a graphical
for representing the information flow and the representation for representing the behayior o

transforms that are applied as data move from | 2 system by depicting its states and the events
input to output. that cause the system to change state.

oge . . ‘\
The Data flow diagram is a collection of The state transition diagram is a collection of
process, data store, flow of data(transitions) states and events.
and external entity.
]

The Data flow diagrams are used to represent The state transition diagrams are typically

the system at any level of abstraction, and the | drawn at single level. The_ay are intended to
increasing levels are used to expose moré and | expose the overall behavior of the system,
more functionalities in the system.

_—

Q.5 Draw an ER diagram for the relationship of manufacturer and dealership. Also specify the
association, cardinality and modality.

Ans. : ER Diagram

{ { Manufacturer Dealership
= = 0
{1\
Produces - Bike
\/

Contracts

©< Transporter BO

Fig. 6.37 ER diagram

software Engineering
— 6-39

Associations System Models

In above ER diagram varigyg rel
»produces”, “Transports” 2
Dealership and Transporter.

tions are

' .
; Giv i o
which are ygeq to o e o

res
_ Has stock”
assocliate entries ’

Manufacturer,
Manufacturer gives licens for dealership

Dealership has stock for bikes,
Manufacturer produces bikes.
Manufacturer contracts transporter.

Transporter transports bikes.

Cardinality and Modality

. (?ne manufacturer can give licens to many dealers. But to get dealership
licens from manufacturer is a must.

—

o There may be a situation that there is no stock of bikes with Dealers. (Bikes
can be out of stock!) ’

¢ There may be a situation that there may not be a single bike for transport.

e Manufacturer can contract with many transporters.

',

6.3 THE WEB ENGINEERING PROCESS o~
The attributes of Web-based systems and applications have a profound influence
the WebE process that is chosen. In Chapter 3 we noted that a software engin
chooses a process model based on the attributes of the software that is to be g,
oped. The same holds true for a Web engineer.

If immediacy and continuous evolution are primary attributes of a WebApp, a v
engineering team might choose an agile process model (Chapter 4) that progy
WebApp releases in rapid-fire sequence. On the other hand, if a WebApp is to be
veloped over a longer time period (e.g., a major e-commerce application), an ing
mental process model (Chapter 3) might be chosen.

“Web development is an adolescent . . . Like most adolescents, it wanis to be accepted as an adult as it fries to pull
away from its parents. If it is going fo reach its full potential, it must take a few lessons from the more seasoned
world of software development.”

Doug Wallace et o

The network intensive nature of applications in this domain suggests a pop
tion of users that is diverse (thereby making special demands on requirements
itation and modeling) and an application architecture that can be highly special

thereby maki .
: y making demands on design). Because WebApps are often content-driven

with ' s B e

b; sc}a:Zdirll:aZha'Sl}i'on aesthetics, it is likely that parallel development activities will
hnical Within the WebE process and involve a team of both technical and non-

technical people (e.g., copywriters, graphic designers).

16.3.1 Defining the Framework

Any one of the agile process models (e.g., Extreme Programming, Adaptive Software
Development, SCRUM) presented in Chapter 4 can be applied successfully as a WebE
process. The process framework that is presented here is an amalgam of the princi-
ples and ideas discussed in Chapter 4.

To be effective, any engineering process must be adaptable. That is, the organi-
zatif)n of the project team, the modes of communication among team members, the
engineering activities and tasks to be performed, the information that is collected
and created, and the methods used to produce a high-quality product must all be
adapted to the people doing the work, the project timeline and constraints, and the

problem to be solved. Before we define a process framework for WebE, we must rec-
ognize that:

1. WebApps are often delivered incrementally. That is, framework activities will
occur repeatedly as each increment is engineered and delivered.

2. Changes will occur frequently. These changes may occur as a result of the
evaluation of a delivered increment or as a consequence of changing busi-
ness conditions.

3. Timelines are short. This mitigates against the creation and review of volu-
minous engineering documentation, but it does not preclude the simple re-
ality that critical analysis, design, and testing must be recorded in some

manner.

In addition, the principles defined as part of the “Manifesto for Agile Software De-

velopment” (Chapter 4) should be applied. However, the principles are not the Ten

Commandments. It is sometimes reasonable to adopt the spirit of these principles

without necessarily abiding by the Jetter of the manifesto.
With these issues in mind, we discuss the WebE process within the generic

process framework presented in Chapter 2.

mmunication. Within the WebE process, customer communica-

Customer co ‘ ' ' ’
tion is characterized by two major tasks: business analysis and formulation. Busi-
zational context for the WebApp. In

ness analysis defines the business/organi : : '
addition, stakeholders are identified, potential changes In business envnronmem.or
requirements are predicted, and integration between the WebApp a.nd Other.busp
ness applications, databases, and functions is defined. Ff)rmula'tlon is a rgqunre-
ments gathering activity involving all stakeholders. The intent is to describe the

508 PART THREE APPLYING WEB ENGINEERING

problem that the WebApp is to solve (along with basic requirements for the Web-
App) using the best information available. In addition, an attempt is made to iden-
tify areas of uncertainty and where potential changes will occur.

Planning. The project plan for the WebApp increment is created. The plan con-
sists of a task definition and a timeline schedule for the time period (usually mea-
sured in weeks) projected for the development of the WebApp increment.

Modeling. Conventional software engineering analysis and design tasks are
adapted to WebApp development, merged, and then melded into the WebE model-
ing activity (Chapters 18 and 19). The intent is to develop “rapid* analysis and de-
sign models that define requirements and at the same time represent a WebApp
that will satisfy them.

Construction. WebE tools and technology are applied to construct the WebApp
that has been modeled. Once the WebApp increment has been constructed, a se-
ries of rapid tests are conducted to ensure that errors in design (i.e., content, archi-
tecture, interface, navigation) are uncovered. Additional testing addresses other
WebApp characteristics.

Deployment. The WebApp is configured for its operational environment, deliv-
ered to end-users, and then an evaluation period commences. Evaluation feedback
is presented to the WebE team, and the increment is modified as required.

These five WebE framework activities are applied using an incremental process flow
as shown in Figure 16.1.

m Acceptance test

The WebE Customer use

process Customer evaluation Gediis
Component test

Release

Software increment

Refactoring

Design model

' Content
Business analysis Analysis model Architecture
formulation Content Navigation
lteration plan lteration Interface
Function

Configuration

ISR i et E R TETE 2 T T —-J

16.3.2 Refining the Framework

We have already noted that the WebE process model must be adaptable. That is, a
definition of the engineering tasks required to refine each framework activity is left
to the discretion of the Web engineering team. In some cases, a framework activity
is conducted informally. In others a series of distinct tasks will be defined and con-
ducted by team members. In €very case, the team has responsibility for producing a
high-quality WebApp increment within the time period allocated.

It is important to emphasize that tasks associated with WebE framework activi-
ties may be modified, eliminated, or extended based on the characteristics of the
problem, the product, the project, and the people on the Web engineering team.

“There are those of us who believe that the best practices for software development are practical and deserve
implementation. And then there are those of us who believe that best practices are interesting in an academic sort of

way, but are not for the real world, thank you very much.”
Warren Keuffel

—~—16.4 WER ENGINEERING BEST PRACTICES

ﬁpwcss

Be sure that the
business need for a
WebApp has been
clearly enunciated by
someone. If it hasn’t,
your WebE project is
at risk.

Will every WebApp developer use the WebE process framework and tagk set g
fined in Section 16.3? Probably not. Web engineering teams are Sometimeg Unde
enormous time pressure and will try to take short-cuts (even if thege are j||.
advised and result in more development effort, not less). But a set of fundamema]
best practices—adopted from the software engineering pracltices discusSed
throughout Part 2 of this book—should be applied if industry-quality WebApps are

to be built.

1. Take the time to understand business needs and product objectives, even if the
details of the WebApp are vague. Many WebApp developers erroneously he.
lieve that vague requirements (which are quite common) relieve them from
the need to be sure that the system they are about to engineer has a legiti-
mate business purpose. The end result is (too often) good technical work that
results in the wrong system built for the wrong reasons for the wrong audj-
ence. If stakeholders cannot enunciate a business need for the WebApp, pro.
ceed with extreme caution. If stakeholders struggle to identify a set of clegy
objectives for the product (WebApp), do not proceed until they can.

2. Describe how users will interact with the WebApp using a scenario-based ap-
proach. Stakeholders must be convinced to develop use-cases (discussed
throughout Part 2 of this book) to reflect how various actors will interact with
the WebApp. These scenarios can then be used (1) for project planning and
tracking, (2) to guide analysis and design modeling, and (3) as important in-
put for the design of tests.

3. Develop a project plan, even if it is very brief. Base the plan on a predefined
process framework that is acceptable to all stakeholders. Because project
timelines are very short, schedule granularity should be fine; i.e. in many in-
stances, the project should be scheduled and tracked on a daily basis.

4. Spend some time modeling what it is that you're going to build. Generally, com-
prehensive analysis and design models are not developed during Web engi-
neering. However, UML class and sequence diagrams along with other
selected UML notation (e g., state diagrams) may provide invaluable insight.

S. Review the models for consistency and quality. Formal technical reviews
(Chapter 26) should be conducted throughout a WebE project. The time spent
on reviews pays important dividends because it often eliminates rework and

results in a WebApp that exhibits high quality—thereby increasing customer
satisfaction.

6. Use tools and technology that enable You to construct the system with as many
reusable components as possible. A wide array of WebApp tools are available
for virtually every aspect of WebApp construction. Many of these tools enable

CH
APTER 16 WEB ENGINEERING

the
perform Sf;ftem, Users of a WebApp will often give it
» they move elsewhere—never to return. It is

“test first, then de "
) ploy” should be an overridi ,
es must be stretched. g pilesn-

one chance. If it fails to
for this reason that
phy, even if deadlin

AR R RO AU & AR M v o
N SIS o TR BB
SO PRI Gl s

Quality Criteria/Guidelines for WebApps

WebE strives to produce high-quality WebApps
But what is “quality” in this context, and what guidelines .
are available for achieving it2 In his paper on Web-site
quality assurance, Quibeldey-Cirkel [QUIOT] suggests a

Art and the Zen of Web Sites
www.tlc-systems.com/webtips.shtml

Designing for the Web: Empirical Studies
www.microsoft.com/usability /webcon.htm

f:omprehensive set of on-line resources that address these ~ Nielsen’s useit.com

issues: :

W3C: Style Guide for Online Hypertext Qu:r;;‘vyw ;s:;:):r);:nce
www.w3.org/ Provider/Style www.qualityofexperience.org

The Sevloid Guide to Web Design Creating Killer Web Sites
www. sev.com.au/webzone/design/guide.asp www_killersites.com/core.html

Web Pages That Suck All Things at Web
www.webpagesthatsuck.com/ index.html www.pantos.org/ atw

Resources on Web Style SUN’s New Web Design
www.westegg.com/ unmaintained/badpages www.sun.com/980113/sunonnet

Tognazzini, Bruce: Homepage
www.asktog.com

-r

Gartner’s Web Evaluation Tool
www.gartner.com/ ebusiness/website-ings

IBM Corp: Web Guidelines Webmonkey |
www-3.ibm.com/ibm/easy/eou_ext. nsf/Publish/572 hotwired.lycos.com/webmonkey/ design/?w=design
World's Best WebSites

World Wide Web Usability

ijhcs.open.ac.uk
Interface Hall of Shame
\ www.iarchitect.com/ mshame.him

www.worldbestwebsites.com
Yale University: Yale Web-Style Guide
info.med .yo\e.edu/ caim/manual J

Object Oriented Testing methods:

Testing is a continuous activity during software development. In object-oriented systems,
testing encompasses three levels, namely, unit testing, subsystem testing, and system
testing.

Unit Testing:

e In unit testing, the individual classes are tested. It is seen whether the class
attributes are implemented as per design and whether the methods and the
interfaces are error-free.

e Unit testing is the responsibility of the application engineer who implements the
structure.

Subsystem Testing:

e This involves testing a particular module or a subsystem and is the responsibility of
the subsystem lead. It involves testing the associations within the subsystem as well
as the interaction of the subsystem with the outside.

e Subsystem tests can be used as regression tests for each newly released version of
the subsystem.

System Testing:
e System testing involves testing the system as a whole and is the responsibility of the

quality-assurance team. The team often uses system tests as regression tests when
assembling new releases.

Requirements Analysis Architecture/ Code ?ys: o Tus:r
o I - Testing - Black-box - Function - Alpha testing
reviews - Prototype - Model reviews Welng o - Phctteetog
sl koo s - Boundary - Insz‘allauon - :i.lot testing
walkthroughs - Prove it with walkthroughs Y. - 'c;'ff.f.'km ; acv:pume
-Prove it with code - Prototype i i ting (UA
code -Usage walkthroughs Araton v norD

- Usage scenario - Prove it with festing ; sur;mu et'e r'\g
scenario tosting code - Class bosting . e

testing -Code reviews

- Covarage
tosting

« Inheritance-
regression
testing

« Mothod testing

« Path testing

- White-box
testing

(Regression Testing, Quality Assurance ’

Copyright 2004 Scott W. Ambler

Object-Oriented Testing Techniques:
Grey Box Testing:

The different types of test cases that can be designed for testing object-oriented programs

are called grey box test cases. Some of the important types of grey box testing are:

o State model based testing: This encompasses state coverage, state transition
coverage, and state transition path coverage.

o Use case based testing: Each scenario in each use case is tested.

o Class diagram based testing: Each class, derived class, associations, and aggregations
are tested.

e Sequence diagram based testing: The methods in the messages in the sequence

diagrams are tested.

Techniques for Subsystem Testing:

The two main approaches of subsystem testing are:

o Thread based testing: All classes that are needed to realize a single use case in a
subsystem are integrated and tested.

o Use based testing: The interfaces and services of the modules at each level of
hierarchy are tested. Testing starts from the individual classes to the small modules
comprising of classes, gradually to larger modules, and finally all the major

subsystems.

Categories of System Testing:

¢ Alpha testing: This is carried out by the testing team within the organization that
develops software.

o Beta testing: This is carried out by select group of co-operating customers.

o Acceptance testing: This is carried out by the customer before accepting the

deliverables.

Black-box testing:
Testing that verifies the item being tested when given the appropriate input provides the

expected results.
Boundary-value testing:
Testing of unusual or extreme situations that an item should be able to handle.

Class testing:

The act of ensuring that a class and its instances (objects) perform as defined.

Component testing:

The act of validating that a component works as defined.
Inheritance-regression testing:

The act of running the test cases of the super classes, both direct and indirect, on a given

subclass.

Integration testing:

Testing to verify several portions of software work together.

Model review:
An inspection, ranging anywhere from a formal technical review to an informal

walkthrough, by others who were not directly involved with the development of the model.

Path testing:

The act of ensuring that all logic paths within your code are exercised at least once.
Regression testing:

The acts of ensuring that previously tested behaviors still work as expected after changes

have been made to an application.
Stress testing:

The act of ensuring that the system performs as expected under high volumes of

transactions, users, load, and so on.

Technical review:

A quality assurance technique in which the design of your application is examined critically
by a group of your peers. A review typically focuses on accuracy, quality, usability, and
completeness. This process is often referred to as a walkthrough, an inspection, or a peer

review.
User interface testing:

The testing of the user interface (Ul) to ensure that it follows accepted Ul standards and
meets the requirements defined for it. Often referred to as graphical user interface (GUI)

testing.

White-box testing:
Testing to verify that specific lines of code work as defined. Also referred to as clear-box

testing.

