
Chapter Comments 6-1

Chapter 6

System Engineering

CHAPTER OVERVIEW AND COMMENTS

This intent of this chapter is to provide a brief introduction to the system engineering
process. The overall structure of computer-based systems is discussed and a brief
overview of the system engineering hierarchy is presented. Business process
engineering (BPR) and product engineering are discussed in overview fashion.

Note: Some reviewers of this edition argued that a discussion of system engineering is
beyond the scope of a software engineering text.

S/W Eng occurs as a consequence of a process called System engineering. System
Engineering focuses on analyzing, designing, and organizing those elements into a
system that can be a product, a service, or a technology for the transformation of
information.

6.1 Computer-Based Systems

This section introduces the systems view of engineering (all complex systems can be
viewed as being composed of cooperating subsystems). The elements of computer-
based systems are defined as software, hardware, people, database, documentation, and
procedures.

A computer-based system makes use of a variety of system elements.

Software: programs, data structures, and related work products.
Hardware: electronic devices that provide computing capabilities.
People: Users and operators of hardware and software.
Database: A large, organized collection of information that is accessed via S/w and
persists over time.
Documentation: manuals, on-line help files.
Procedures: the steps that define the specific use of each system element.

One complicating characteristic of computer-based system is that the elements
constituting one system may also represent one macro element of a still large system.
The micro-element is a computer-based system that is one part of a larger computer
based system.
6.2 The System Engineering Hierarchy

6-2 SEPA, 6/e Instructor’s Guide

The key to system engineering is a clear understanding of context. For software
development this means creating a "world view" and progressively narrowing its focus
until all technical detail is known.

In software engineering there is rarely one right way of doing something. Instead
designers must consider the tradeoffs present in the feasible solutions and select one
that seems advantageous for the current problem. This section lists several factors that
need to be examined by software engineers when evaluating alternative solutions
(assumptions, simplifications, limitations, constraints, and preferences).

Regardless of its domain of focus, system eng. Encompasses a collection of top-down
and bottom-up methods to navigate the hierarchy illustrated below:

Chapter Comments 6-3

The system eng. Process usually begins with a “world view.” The entire business or
product domain is examined to ensure that the proper business or technology context
can be established.

The world view is refined to focus more fully on a specific domain of interest.

Within a specific domain, the need for targeted system elements (data, S/W, H/W, and
people) is analyzed.

Finally, the analysis, design, and construction of a targeted system element are initiated.

6.2.1 System Modeling

System modeling is an important element of the system eng. Process. The Engineer
creates models that:

1. Define the processes that serve the needs of the view under consideration.

2. Represent the behavior of the processes and the assumptions on which the
behavior is based.

3. Explicitly define both exogenous and endogenous input to the model.
4. Exogenous inputs link one constituent of a given view with other constituents at

the same level of other levels; endogenous input links individual components of
a constituent at a particular view.

5. Represent all linkages (including output) that will enable the engineer to better
understand the view.

To construct a system model, the engineers should consider a number of restraining
factors: “Read examples of each in book page# 127.”

1. Assumptions that reduce the number of possible permutations and variations,
thus enabling a model reflect the problem in a reasonable manner.

2. Simplifications that enable the model to be created in a timely manner.
3. Limitations that help to bound the system.
4. Constraints that will guide the manner in which the model is created and the

approach taken when the model is implemented.
5. Preferences that indicate the preferred architecture for all data, functions, and

technology.

6.3 Business Process Engineering: An Overview

The goal of Business Process Engineering (BPE) is to define architectures that will enable a
business to use information effectively.
BPE is one process for creating an overall plan for implementing the computing
architecture.
Three different architectures must be analyzed and designed within the context of
business objectives and goals:

6-4 SEPA, 6/e Instructor’s Guide

 Data architecture

 Application architecture

 Technology infrastructure

The data architecture provides a framework for the information needs of a business. The

building blocks of the architecture are the data objects that are used by the business.
Once a set of data objects is defined, their relationships are identified. A relationship
indicates how objects are connected to one another.

The application architecture encompasses those elements of a system that transform

objects within the data architecture for some business purpose.

The technology infrastructure provides the foundation for the data and application
architectures. The infrastructure encompasses the h/w and s/w that are used to
support the applications and data.

Chapter Comments 6-5

6.4 Product Engineering: An Overview

Emphasize that software engineers participate in all levels of the product engineering
process that begins with requirements engineering. The analysis step maps
requirements into representations of data, function, and behavior. The design step maps
the analysis model into data, architectural, interface, and software component designs.

6.5 System Modeling with UML

 In terms of the data that describe the element and the operations that manipulate the
data Deployment diagrams

 Each 3-D box depicts a hardware element that is part of the physical
architecture of the system

 Activity diagrams
 Represent procedural aspects of a system element

 Class diagrams
 Represent system level elements

CLSS processor

Sort ing subsystem

Sensor data

acquisit ion subsystem

Operator display

shunt cont roller

Conveyor

Pulse tach
Bar code reader Shunt actuator

6-6 SEPA, 6/e Instructor’s Guide

get c onv ey or speed

send shunt

c ont ro l dat a

get shunt st at us read bar c ode

st art c onv ey or l ine

det er m ine b in loc at ion

valid bar code

set f or re jec t b in

conveyor in m ot ion

read bar c ode

get c onv ey or st at us

produc e report ent ry

conveyor stopped

invalid bar code

Chapter Comments 6-7

6-8 SEPA, 6/e Instructor’s Guide

Box

barcode

forwardSpeed

conveyorLocat ion

height

widt h

dept h

weight

cont ent s

readBarcode()

updat eSpeed ()

readSpeed()

updat eLocat ion()

readLocat ion()

get Dimensions()

get Weight()

checkCont ent s()

class name

at t ribut es

not e use of capit al

let t er f or mult i-word

at t ribut e names

operat ions
(parent heses at end

of name indicat e t he

list of at t ribut es t hat t he

operat ion requires)

Object Oriented Testing methods:

Testing is a continuous activity during software development. In object-oriented systems,
testing encompasses three levels, namely, unit testing, subsystem testing, and system
testing.

Unit Testing:

 In unit testing, the individual classes are tested. It is seen whether the class
attributes are implemented as per design and whether the methods and the
interfaces are error-free.

 Unit testing is the responsibility of the application engineer who implements the
structure.

Subsystem Testing:

 This involves testing a particular module or a subsystem and is the responsibility of
the subsystem lead. It involves testing the associations within the subsystem as well
as the interaction of the subsystem with the outside.

 Subsystem tests can be used as regression tests for each newly released version of
the subsystem.

System Testing:

 System testing involves testing the system as a whole and is the responsibility of the
quality-assurance team. The team often uses system tests as regression tests when
assembling new releases.

Object-Oriented Testing Techniques:

Grey Box Testing:

The different types of test cases that can be designed for testing object-oriented programs

are called grey box test cases. Some of the important types of grey box testing are:

 State model based testing: This encompasses state coverage, state transition

coverage, and state transition path coverage.

 Use case based testing: Each scenario in each use case is tested.

 Class diagram based testing: Each class, derived class, associations, and aggregations

are tested.

 Sequence diagram based testing: The methods in the messages in the sequence

diagrams are tested.

Techniques for Subsystem Testing:

The two main approaches of subsystem testing are:

 Thread based testing: All classes that are needed to realize a single use case in a

subsystem are integrated and tested.

 Use based testing: The interfaces and services of the modules at each level of

hierarchy are tested. Testing starts from the individual classes to the small modules

comprising of classes, gradually to larger modules, and finally all the major

subsystems.

Categories of System Testing:

 Alpha testing: This is carried out by the testing team within the organization that

develops software.

 Beta testing: This is carried out by select group of co-operating customers.

 Acceptance testing: This is carried out by the customer before accepting the

deliverables.

Black-box testing:

Testing that verifies the item being tested when given the appropriate input provides the

expected results.

Boundary-value testing:

Testing of unusual or extreme situations that an item should be able to handle.

Class testing:

The act of ensuring that a class and its instances (objects) perform as defined.

Component testing:

The act of validating that a component works as defined.

Inheritance-regression testing:

The act of running the test cases of the super classes, both direct and indirect, on a given

subclass.

Integration testing:

Testing to verify several portions of software work together.

Model review:

An inspection, ranging anywhere from a formal technical review to an informal

walkthrough, by others who were not directly involved with the development of the model.

Path testing:

The act of ensuring that all logic paths within your code are exercised at least once.

Regression testing:

The acts of ensuring that previously tested behaviors still work as expected after changes

have been made to an application.

Stress testing:

The act of ensuring that the system performs as expected under high volumes of

transactions, users, load, and so on.

Technical review:

A quality assurance technique in which the design of your application is examined critically

by a group of your peers. A review typically focuses on accuracy, quality, usability, and

completeness. This process is often referred to as a walkthrough, an inspection, or a peer

review.

User interface testing:

The testing of the user interface (UI) to ensure that it follows accepted UI standards and

meets the requirements defined for it. Often referred to as graphical user interface (GUI)

testing.

White-box testing:

Testing to verify that specific lines of code work as defined. Also referred to as clear-box

testing.

