A e e
Ingneering

71 Introduction

Design is a meaningful engineering reépresentation of softwa

) r

way by which we can accurately translate the customer’s
software product or system. In design engineering set

practices are used in order to develop high quality software. Thus design serves as the
basis for all the software engineering steps. Sometimes design is referred as a core
engineering activity in software development life cycle. In this chapter we will get
introduced with the systematic approach to design process. Then we will discuss how
to bring quality in the software product. To implement right software product there
should be some definite framework, and such a framework is defined in design
concept. Finally we discuss the design model in which active participation of desig'n
elements in design procedure is discussed. We will begin our discussion with analysis

e. Design is the only
requirements into a finished
of principles, concepts and

and design model.

7.1.1 Analysis and Design model

After analyzing and specifyi _ '
. des?;na begins gEach of the elements of analysis model is us

design model.

i ftware
ng all the requirements the process of so
ed to create the

e The elements of analysis model are

Data Dictionary

Entity Relationship diagram
Data flow diagram

State transition diagram

Control specification

Process Specification

oG W N e

Software Engineering 7-2 Design Engi"eering

Data objec, %

The elements of design model are
Data design
Architectural Design
Interface design

Component-level design.

/\

Component
level design

.ot
\O
; \Q\

O

Entity
relationship
diagram

diagram Interface
Data e design
dictionary

Architectural
design ~
Data \
7 design

Design model

Control specification
(CSPEC)

Analysis model
Fig. 7.1 Analysis and design model

The data design is used to transform the information domain model of
analysis phase into the data structures. These data structures play an
important role in software implementation. The entity relationship diagram
and data dictionary are used to create the data design model. In entity
relationship diagram the relationships among the data objects is defined and
in data dictionary detailed data contents are given, Hence ERD and data
dictionary are used to implement the data design.

The architectural design is used to represent the relationship between major
structural elements with the help of some “design patterns.” Hence data flow
diagrams from analysis model serve as the basis for architectural design.

The ‘interface design’ describes how software interacts within itself. A"
interface means flow of information and specific type of behavior. Hence by

using the data flow and control flow diagrams the interface design can b
modeled.

goftware Engineering

—

o In the ‘component-leye] gp

. ign’ th
into procedural : € struc
,] description tura] elementg o
component-level design' of software Of software archit
(STD), Control Specif; an be obtaineq using Cgmponents. Henceemtll:e
tate Transi : e
tio

cation(CspEC)

n Diagrams

and P
rocess Specification (PSPEC)

7.2 Design Process and Design Qualit
| ity

7.2.1 Design Process

o The design is represented at high level of abstraction
Following figure shows the design activities -

Requirement
specification
Design activities

DS e SR

‘Architgctural Abstract Interface Component Data structure Algorithm | ;
: .q9_81gn specification design design design design, .|’
t Data structure Algorithm
System Software Interface Componen struct oithn
arcp\(itecture specification Specification specification specification Specification

~—

Design products

Fig. 7-2 Design Process
cation the architectural design and abstract

i onents can

N S ted. In architectural design the subsysteifn :ﬁm;:ubs s ca
P 4 Crea}f .abstract specification is used to specity tne .y 1
biiideniaties And e the subsystems are designed which is called
2. Then the interfac

interface design-

4 In component design of s
nts of

of particular data S
d to hold the data-

1. From requirements specifi

es between

is done.
mponents 1S
psystems €0 _ o
ubsy o are | dentified and designed the decision
the sy

tures 1S taken. And the data structure is
truc

on use
designe

Software Engineering 7-4 Design g

6. For performing the required functionality, the appropriate algoriy
designed. These algorithms should suit the data structyreg Select:d is
f

software product. or

The design process occurs in iterations so that subsequent refinemen; I8 poge
At each design step the corresponding specifications are created. Thmughol’l:lbie.
design process the quality of evolving design is assessed with the help of forths:
technical reviews and design walkthroughs. M|

7.2.2 Design Principles -
Davis suggested a set of principles for software design as:
* The design process should not suffer from “tunnel vision”.
* The design should be traceable to the analysis model.
* The design should not reinvent the wheel.

* The design should “minimize the intellectual distance” between the
software and the problem in the real world.

= The design should exhibit uniformity and integration.

* The design should be structured to accommodate change.
* The design should be structured to degrade gently.

= Design is not coding and coding is not design.

* The design should be assessed for quality.

= The design should be reviewed to minimize conceptual errors.

7.2.3 Design Quality

The goal of any software design is to produce high quality software. In order to
evaluate quality of software there should be some predefined rules or criteria that
need to be used to assess the software product. Such criteria serve as characteristics

for good design. The quality guidelines are as follows —
1. The design architecture should be created using following issues -

¢ The design should be created using architectural styles and patterns:
e Each component of design should posses good design characteristics

e The implementation of design should be evolutionary, so that testing

can be performed at each phase of implementation. "
. , : Id
2. In the design the data, architecture, interfaces and components shou

clearly represented.
3. The design should be modular. That means the subsystems in the
should be logically partitioned.

design

7
{ " Engineering 7.8

g
data structure shoul Des
uld be appropriate W

4. The
roblem- | .
p Y chosen for the

5. The components should b
.) e LlS\ .
independency can be achieved in thdem the - design s
e design h O that functi
_ nctional

desi
esign of specific

6. Using the information obtai
ained in s
should be created. ained in software requirem
ent analysis
‘ the desi
gn

e

7. The interfaces in the desi
design should be such that t
4 e Con'lpk\xll.
i y bOfWeen the

connected compon
ents of th
. e S q[—\
system with exte : ystem gets reduce -
) rnal interface should be simplifl.c‘c?- Similarly interface of the
* led one.

8. Every design of th
e software s
and effectively ystem should convey its :
. y its meaning a .
appropriately

72.4 Design Quality Attributes

The design qualit i
Reliability, perfgrmag . :ttrlzutes P"p“la_rly known as FURPS (Functionality, Usabilit
1 Pachoet], Follow and Supportability) is a set of criteria developed k;y Hewle}t];
mg table represents meaning of each quality attribute

"~ Meaning

Attnbute

Functionality T
Functionality can be checked by assessing the set of features and
capabilities of the functions. The functions should be general and

hould not work only for particular set of inputs. Similarly the security
designing the function.

S
aspect should be considered while
owing the usefulness of the

be assessed by kn

Usability The usability can
system.
; frequency and severity of failure.

Reliability Reliability measure Of ¢
Re eatability refers to the consistency and repeatabilny of the measures.
Ths me ime to failure (MTTF) is a metric that is widely used to

measure the product’s performance and reliability-

S,
. that re resents the response of the system.
Performance It is @ measuré P o I
erformance means measuring the processing peed,
and efficiency-

asuring :
Me usage, respons€ time
aintainability‘ It is the ability to adopt the enhancement

to withstand

. lso called m e
Supportability nri:anges made in the software. It also means the ability
o)
ive

|

7-6 Design Eng:

software Engineering W

7.3 Design Concepts
) ' ' for i . |
The software design concept provides a framework for m‘PIEmEntmg - o~

software. \}

d while designing the software -

Following issues are considere

1. Abstraction -
The abstraction means an ability to cope with the complexity. At each Stage
software design process levels of abstractions should be applied to refine t}(:f
software solution. At the higher level of abstraction, the solution shoulq b:
stated in broad terms and in the lower level more detailed description o the
solution is given.
While moving through different levels of abstraction the Procedury
abstraction and data abstraction are created.
The procedural abstraction gives the named sequence of instructions in the
specific function. That means the functionality of procedure is mentioned by
its implementation details are hidden. For example: Search the Record is
procedural abstraction in which implementation details are hidden(i.e. Enter
the name, compare each name of the record against the entered one, if a
match is found then declare success!! Otherwise declare ‘name not found’)

In data abstraction the collection of data objects is represented. For example
for the procedure search the data abstraction will be Record.The record
consists of various attributes such as Record ID, name, address and

designation.

2. Modularity -

e The software is divided into separately named and addressable components
that called as modules. '

* Meyer defines five criteria that enable us to evaluate a design method with
respect to its ability to define an effective modular system:

Modular decomposability : A design method provides a sys’cematic
mechanism for decomposing the problem into sub-problems. This reduces the
complexity of the problem and the modularity can be achieved.

Modular composability : A design method enables existing desigh
components to be assembled into a new system.

Modular understandability: A module can be understood as a stand alon¢

.unit. It will be easier to build and easier to change.
_ in
Modular continuity: Small changes to the system requirements result !

changes to individual modules, rather than system-wide changes.

software Engineering v

Functioning

Structural model|
Overall architecture of the system can be

represented using this model

Framework mo i
del This model shows the architectural framework and

corresponding applicability.

Dynamic model This model shows the reflection of changes on the
system due to external events.

Process model The sequence of processes and their functioning is
represented in this model

Functional model The functional hierarchy occurring in the system is
represented by this model.

4. Refinement —

e Refinement is actually a process of elaboration.

efinement is a top-down design strategy proposed by Niklaus

o Stepwise r
WIRTH.

e The architecture of a program is developed by su
procedural detail.

ccessively refining levels of

logous to the process of refinement

i is ana
The process of program refinement 1 ,
P Pe ements analysis.

and partitioning that is used during requir
concepts.
Abstraction and refinement are complementarly +cials pare
difference is that - in the abstraction low-level s
Refinement helps the designer to elaborate low-leve

The major
suppressed.

Software Engineering 7-8 Design g, !

Qingg |
N
5. Pattern -

According to Brad Appleton the design pattern can be defineq as _ 1, .
named nugget(something valuable) of insight which conveys the essen IS 5
proven solution to a recurring problem within a certain context. €€ of

In other words, design pattern acts as a design solution for ,
problem occurring in specific domain. Using design pattern deg
determine whether-

particular
1gner can

e Pattern can be reusable
e Pattern can be used for current work

 Pattern can be used to solve similar kind of problem with differep
functionality.

6. Information hiding -

It is the characteristics of module in which major design decisions can be
hidden from all others. Such hiding is necessary because information of one
module cannot be accessed by another module. The advantage of informatiop
hiding is that modifications during testing and maintenance can be magde
independently without affecting the functionality of other modules.

7. Functional independence -

Functional independence can be achieved by modularity, abstraction and
information hiding. Functional independence obtained by creating each
module that is performing only one specific task. And such a module should
be interconnected to other components by a simple interface. Effective
modularity helps in achieving the functional independence. In shot,
Functional independence is a key to good design and good design leads 2
quality in software product. The functional independence is assessed using
two factors cohesion and coupling.

Cohesion

» With the help of cohesion the information hiding can be done.

- .2

* A cohesive module performs only “one task” in software procedure wﬁlh

little interaction with other modules. In other words cohesive modu
performs only one thing.

o Different types of cohesion are :

ted
1. Coincidentally cohesive — The modules in which the set of tasks aré rela

e

with each other loosely then such modules are called coincidentally cohes! "
-

2. Logically cohesive - A module that performs the tasks that are log!

related with each other is called logically cohesive.

goftware Engineering

-_—

7-9

3. Temporal cohesion - Tp,
some specific time span ig

4. Procedural cohesion - W,
- - €n processi
with one another and mygt P SIng elements

of a module are related
be executed ; e relate
i 1 '
module is called procedural cohesive e GTien b Giich
5. Communicational cohesion —

When the processin
g elements of a module
share the data then such module is communicational cohesive;

o The goal is to achieve high cohesion for modules in the system.
Coupling

Design Engineering

module in wh; h

the tasks need
t .
called tempora] cohesive, ey

Coupling effectively represents how the modules can be “connected” with
other module or with the outside world. k

Coupling is a measure of interconnection among modules in a program
structure.

Coupling depends on the interface complexity between modules.

e The goal is to strive for lowest possible coupling among modules in software
design.

testing, and maintenance.

N\ -
y . \\ // \\\ COﬂtrOI
,/ Data coupling . \\couplrng
/ \

\
\ !
7

_——— -

1
.' Control
“ flag

R ™Yo |

e

Software Engineering 7-10 Design E"Qineeri
n

. 4 .
e Various types of coupling are : |

i) Data coupling — The data coupling is possible by parameter Passing
data interaction.

ii) Control coupling — The modules share related control data i, COnry
coupling.

iii) Common coupling — In common coupling common data or a globa] data j

shared among the modules.

iv) Content coupling — Content coupling occurs when one module makes y,
of data or control information maintained in another module.

8. Refactoring -

Refactoring is necessary for simplifying the design without changing the
function or behaviour. Fowler has defined refactoring as the process of
changing a software system in such a way that the external behaviour of the design
do not get changed, however the internal structure gets improved.

Benefits of refactoring are —
¢ The redundancy can be achieved.
e Inefficient algorithms can be eliminated or can be replaced by efficient one.

e Poorly constructed or inaccurate data structures can be removed or replaced.

e Other design failures can be rectified.

The decision of refactoring particular component is taken by the designer of the
software system.

7.4 Design Models

Component
level design
Interface
design
Architectural
design
Data
design

Fia 7 4 Dacicirn mnadal A

software Engineering
e 7-11

Design Engineering

e The design model is represented

Retresent B as .)
cpresenting design model in (e . "¢ Pyramid is a stable object
should be stable. 1§ way means that the software desigr;

e The design model has broad fo

with architectural and interface
level design.

o The design model re
presents th .
stable such that any changes at the software which we create should be

d\;r;fiation of data design, stable mid-region
1gn and the sharp point to for component

:Uld not make lt COllapS n fr
a G : . ed. And (0}
st ble d(.Slgn a hlgh quahty S()f’f\Nare ShOlll 1 I] m SUCh 4

7.4.1 Data Design Element

dat:};is?;rtla l:\f:;g:; ‘:;Ff’irszzmsr:;i :\l;ghf lev-el of abstl.'action. This data represented at
rhe. dats has great smmpact ongthe : y. or implementing the computer based system.

: ‘ rchitecture of software systems. Hence structure of
data is very important factor in software design. Data appears in the form of data
structures and algorithms at the program component level. At the application level it
appears as the database and at the business level it appears as data warehouse and
data mining. Thus data plays an important role in software design.

7.4.2 Architectural Design Element
The architectural design gives the layout for overall view of the software.
Architectural model can be built using following sources —

e Data flow models or class diagrams
¢ Information obtained from application domain

e Architectural patterns and styles.

7.4.3 Interface Design Elements.

Interface Design represents the deta ien
design how information flows from one corrfIPnterfaces-
is depicted. Typically there are three types of 1

iled design of the software system. In interface
t to other component of the system

- , User interface : BY this interface user interacts
| with the system- For example -

is the interface of the

. This o
dichirly external entities.

nents with the
Netwol'king-

External inte
system compo

[ts
- This | interface which represen
sl T it of the system. For

rnal int
s compOr“:’m o ate with each other

Software Engineering 7-12 Design Engineerin

7.4.4 Component Level Design Elements

The component level design is more detailed design of the software systep, s
with the specifications. The component level design elements describe the inten?
details of the component. In component level design all the local data objects, lrequirea
data structures and algorithmic details and procedural details are exposed.

|
d

7.5 Design Document

The design document can be created as follows

Data design.
hitectural design
3 External and internal interfaces

Requirements cross reference

: _;.hgsign;c(jnstraims

6 ;';$ii;}plemén-tai‘y‘ data

8 :_‘Ix‘p?t‘allation manuals

e The design document is used to represent various aspects of design model.

e In this document first of all overall scope of the design effort is described.
The information presented here is used from the SRS.

e Then in data design database structure, any external file structure, internal
data structure, cross reference of data objects to files is defined.

o The architectural design shows how analysis model builds the progra™
architecture. Sometimes structure charts are used to represent the module
hierarchy.

e Then internal and external program interfaces are given. In some cases ?
detailed prototype of a GUI may be represented.

e The requirement cross reference is given in order to ensure that all
requirements are satisfied by the software design. The cross references als(:
indicate which component are critical for implementation. The 1€
documentation is also included in the design document.

* Under design constraints the information such as memory requ“emen‘;,"

special requirement for assembling or packaging the software, requircment

virtual memory, high speed requirement is given.

\

Architectural Design

\

g

8.1 Introduction

As we have seen in previo .
eqirements are transforlr)ned i:tso c:ag’::ms?rflw\(;alie sdesagn is a process in which user
out in various phases such as data design afch?t;ect?;zltiiaer;?;m;zio? candbe' Carriej

. £ v rface design an

f:ﬁ&::g‘fieségezi- Sut of W;ic.h architectural design is the focus of this ciapter.
——— o agre reS é? de81gn Freated to represent the data and Program

ORI quired to build the computer based systems. Architectural
design is a specialized activity in which using specific architectural style and by
considering the system'’s structure and properties of system components a large and
complex system is built. The person who is responsible to design such system is called
software architect in software engineering. The architectural design gives a layout of
the system that is toO be built. In short, the program structure is created during
architectural design along with the description of component properties and their

inter-relationship.
f all we will understand the concept of software architecture.

in the architectural design by means of data
ectural styles and pattern that are
derstand the complete

In this chapter first ©
Then we will discuss the role of data 1 .
design. We will also discuss very interesting . will un
selected for specific architectural puilt. Finally We

process of architectural design-

jtecture
8.2 Software Archité _ for identifying the subsystems

gn ' control and communication.
d fra® all structure of software

blish the over
cification and

(o) esta .
the link petween design spe

making up the system an

The goal of architectt
system. Architectural desigh

actual design process.

@-1

Software Engineering S —0

systems which consists of VArious componey

. - ructure 0 . ' :
Software Architecture is @ St fonents and the inter-relationship among these

externally visible properties of these comp
components

Importance of Software Architecture

. * : ?
There are three reasons why the software architecture 18 SO important?

e gives the representation of the computer based systen

hitectur
i del even the stakeholders can taje

that is to be built. Using this system mo . .
active part in the software development process. This helps in clea

specification/ understanding of requirements.

5 Some early design decisions can be taken using software architecture and
hence system performance and operations remain under control.

3. The software architecture gives a clear cut idea about the computer based
system which is to be built.

8.2.1 Structural Partitioning
The program structure can be partitioned horizontally or vertically.

Horizontal partitioning

Horizontal partitioning defines separate branches of the modular hierarchy for
each major program function.

Horizontal partitioning can be done by partitioning system into : input, da®
transformation (processing) and output.

In horizontal partitioning the design making modules are at the top of the
architecture.

/ \ Decision maker
/ \—__—

ZaN
N\) /\\ /
/

LN

worke

Fig. 8.1 Horizonta| Partitioning

e Engineerin
software Engineering »

Architectural Design

Advantages of horizontal partition
1. These are easy to test, maintain and extend
na.

_They have f i :
2. They have fewer side effects in change Propagation or error propagation.
pisadvantage of horizontal partition

More data has to be passed across i \4
module int i i
. i | erfaces which complicate the overall

Vertical partitioning

Vertical partitioning suggests the control and work should be distributed top-down
in program structure.

Function 1 Funetion 2

N

Function 3

Fig. 8.2 Vertical partitioning

In vertical partitioning

‘ chy for each major function.
f the module hierar
rate branches O

¢ Define sepa functions.

e communication between

- inat
e Use control modules to €O ordin

Advantages of vertical partition S
:ntain the changes- .
L, These ge ensy ® 20 ct and error propagation-

2. They reduce the change imp2

Software Engineering 8-4 Architectura Desig,

8.3 Data Design

Data design is basically the model of data that is represented at the high
level of abstraction.

The data design is then progressively refined to create implementatigy,
specific representations.

Various elements of data design are

o Data object — The data objects are identified and relationship among

various data objects can be represented using entity relationship diagrams
or data dictionaries.

o Databases — Using software design model, the data models are translated

into data structures and databases at the application level.

o Data warehouses — At the business level useful information is identified

Guideli

1.

5.

from various databases and the data warehouses are created. For
extracting or navigating the useful business information stored in the huge
data warehouse then data mining techniques are applied.

ne for data design\/

Apply systematic analysis on data

Represent data objects, relationships among them and data flow along with
the contents.

Identify data structures and related operations

For the design of efficient data structures all the operations that will be
performed on it should be considered.

Establish data dictionary

The data dictionary explicitly represents various data objects, relationships
among them and the constraints on the elements of data structures.

Defer the low-level design decisions until late in the design process

Major structural attributes are designed first to establish an architecture of
data. . And then low-level design attributes are established.

Use information hiding in the design of data structures

The use of information hiding helps in improving quality of software desig™ It
also helps in separating the logical and physical views.

Apply a library of useful data structures and operations

fa
The data structures can be designed for reusability. A use of library 'Qf C:iaon
structure templates (called as abstract data types) reduces the specifica

and design efforts for data.

software Engineering

a— 8-5

\
7' LIS(’ Qa S(?ﬂwﬂr(’ d('Sf\’ ArChithtura| DOSIQH

; h and py ;
abstraction P O8ramming lan?unx’o
¢ &

to support data specificati
| pecification and
The implementation of 4 f

i ata sty -
design and by Choosing uctures

) c ,
suitable an be done by effective software

programming language.

8.4 Architectural Styles ang Pattern
g8.4.1 Architectural Styles

e The architectural
hit .mode] or style is a pattern for creati h
architecture for given piohlem. Hyme eating the system

ver
heterogeneous and do not follow single [most ok Wi latge systems are

architectural style,
o System categories define the architectural style

1. Components : They perform a function,

f_;’t" example: Database, simple computational modules, clients, servers and
ilters.

2. Connectors : Enable communications. They define how the components
communicate, co-ordinate and co-operate.

For example Call, event broadcasting, pipes

3. Constraints : Define how the system can be integrated.

4. Semantic models : Specify how to determine a system’s overall properties
from the properties of its parts.

e The commonly used architectural styles are

1. Data centered architectures
2. Data flow architectures
3. Call and return architectures
4. Object oriented architectures

5. Layered architectures

8.4.1.1 Data Centered Architectures of the architecture and other

In this architecture the data store lies jat tht::i dcer:lf;; O ot modify operations, The
components frequently access it by performing a o’sitory. Sometime the client software
client software reques—ts for the data to cgntral re-l:t,hout any change in data or without
accesses the data from the central repository wi

ons of software Zolns of interchangeability.

any change in acti the property

' e - d by a
Data tered architecture pos the architecture can pe replaced by
In - n Corl’lponeﬂt o omponents.
terchangeability means ?f yting the working of other €
aftec

New component without

Software Engineering

8-6 Architecturj| DGSign

Client
software

Client
software

Client
software

—0n

Client
software

Client
software

Client
software

Fig. 8.3 Data centered architecture

In data centered architecture the data can be passed among the components.

In data centered architecture

Components are : Database elements such as tables, queries.

Communication are : By relationships

Constraints are : Client software has to request central data store for information.

8.4.1.2 Data Flow Architectures

In this architecture series of transformations are applied to produce the output
data. The set of components called filters are connected by pipes to transform the data
from one component to another. These filters work independently without a bothering

about the working of neighbouring filter.

=1 Filter »1 Filter
—v\f Filter T Filter |7+ Filter | Fiter > Fiter |
‘\\ 1 ,/
N I Vi
N] rd
\\ I ’I
N\ 1 7/
AN = -
v iy Filter =1 Filter
Pipes
Filter }-=

Fig. 8.4 Pipes

and Filters

goftware Engineering
—_—

8.7
o T— Architectural Design
If the data flow degenerates ing a single]
sequential e of transforms, it is termed as batch
—= Filt :
ilter Filter }—e Filter }—] Filter Filter —e

Fig. 8.5 Batch sequential
In this pattern the transformation ig applied on the batch of data

8.4.1.3 Call and Return Architecture

The program structure can be easily modified or
organized into modules within the program. In thi
each other. The program structure decomposes the
where a main program invokes number of program co

scaled. The program structure is
s architecture how modules call
function into control hierarchy
mponents.

In this architecture the hierarchical control for call and return is represented.

Main
/ Fan out
a b c
d g K m n
e h i ' 0 d ;
\ Fan in

Fig. 8.6 Call and return architecture

8.4.1.4 Object Oriented Architecture

: mpose
In this architecture the system 15 decomp ning oper
These objects encapsulate data and the corresp

Aptsli . e data. hoi ifyi jects classes,
Pplied to manipulate thd ot erned with 1dent1f}’m%ro(;bl]1e;§elcs -
The object oriented decompo=- o
their attributes and the corresppndm
to co-ordinate the object op =

d into number of interacting objects.
ations that must be

] . 8-8 ArchitectUra| i
Software Engineering Des;
Class name
Class name B
A
Attributes Attributes
Messages .
Operations Operations
Messages Messages Messages
(Parameter
passing)
Class name Class name
C D
Attributes Attributes
Messages _
Operations = Operations

Fig. 8.7 Object oriented architecture
8.4.1.5 Layered Architecture

e The layered architecture is composed of different layers. Each layer is
intended to perform specific operations so machine instruction set can be
generated. Various components in each layer perform specific operations.

The outer layer is responsible for performing the user interface operations

while the components in the inner layer perform operating system interfaces.

User interface
layer

Application
layer

| Components
Fig. 8.8 Layered architecture components

an
B

ahi:

e

are Engineering
softwar® 8 -9
\

Architectural Design

o The components in intermegiate

- 1
application software functiong. aYer perform utility services and

g.4.2 Architectural Patterns

1. Concurrency

Concurr;%r'lcgf means handling multiple tasks in parallel. For example in operating
system, mu'tiple tasks are executed in parallel. Hence concurrency is a pattern which

repre§ents tl'1at the system components can interact with each other in parallel. The
benefit of this pattern is that system efficiency can be achieved.

2. Persistence

Continuity in the data can be maintained by the persistence pattern. In other
words the data used in earlier execution can be made available further by storing it in
files or in databases. These files/databases can be modified in the software system as
per the need. In object oriented system the values of all attributes various operations
that are to be executed are persistent for further use. Thus broadly there are two
patterns. i) Database management pattern ii) Application level pattern.

3. Distribution

Distribution pattern refers to the way in which the system .components
communicate with each other in distributed systems. There are two major problems
that occur in distribution pattern

; nts
e The nature of interconnection of the compone

* The nature of communication
Th bl be solved by other pattern called broker Pa:em.l-Thte broker
ése problems can hat the client server
pattern l'P between server and client components SO tha
ies be

ient want some service from
“ocfunication can be eStabliShed properl)’- Whel]: Cl’clhen conveys this message to
se d age to broker. The broker
rver, it first sends mess

i The CORBA is a
tion. Typical example 15 CORBA
server and completes the connec .

i . ttern is used.
distributed architecture in which proker pa

8.5 Architectural Design

) -qitial stag ,
In architectural design at the " ith the software:

entities 1S also

text model is prepared. This model
e a Along with this model the

' ibed. The context
defines the external entities that 1n describ

. .0 wi
RNature of goftware interaction

A *

Software Engineering 8-10 Architectura) Design i

model is prepared by using information obtained from analysis moqg -
requirement specification. After that the designer creates structure of the System 1,
defining and refining software components. Thus process of creations of context mOde}i
and structural model of the system is iteratively carried out until and unless COmplete
architectural model of the system gets created. Let us discuss how an architectura]
design gets generated using some simple representations.

8.5.1 Representing System in Context

We have already discussed in chapter 6, how to create a context model for e
given software sysicm. As per our discussion, context model is a graphical mode| in
which the environment of the system is defined by showing the external entities thet
interact with the software system. '

In architectural design the Architectural Context Diagram(ACD) is created. The
difference between context model and architectural context diagram is that in ACD the |
nature of interaction is clearly described. Following are the basic terminologies
associated with architectural context diagram.

Super ordinate systems

Used by

Target system
k— e —— _J Peers

Uses

|
Y

Actor

Subordinate systems

Fig. 8.9 Architectural context diagram

:ch the
Target system : The target system is a computer based system for which

architectural context diagram has to be prepared.

;sing
Super ordinate systems : These systems are created at higher level of proce?

when the target system is being developed.

<

oftware Engineering 8-11 ;
softwal® —— Architectural Design
sub ordinate systems : These systems are ysed 1,

y the target .
of the data that are necessary to complete target system functi%ma?'};;tem for processing
1
Actors : These are the systems or entities that intera

producing or consuming information of the target system

ct with the target system for

Peer-level systems: These are the systems that interact on peer to peer basis
For example :

Consider the Inventory Control System for which the Architectural Context
Diagram can be prepared as below

Super ordinate systems

Accounting
system

Maintenance
system

Inventory lnver;tzlry Report
monitoring cosnt;m generation
system Sy system

Peers

Account
database

Inventory
database

Subordinate systems

Fig. 8.10 ACD for inventory control system

8.5.2 Defining Archetypes

hetype is @ pasic step in architectural design, more precisely in
Defining archetyp

) Archetype is a core abstraction using which the S'ystem can
functionality baSe.d deslgl:;types a small set of entities that describe the major part of
be structured. Using arc /

be described. Typically archetypes are the stable element§ and
system behaviour can though system undergo through various changes. I(lientl.fylng
they do not change‘ e‘lle:;sk and it requires well experienced architect. Following figure
. itica
archetypes 1s @ cri

es.
i archetyP
represents various

Software Engineering 8-12 Architectura| Desigy,
—_®Sign

Control unit

O] Node

—

Communicates
with

l |

Detector Indicator

Fig. 8.11 Archetypes

Various types of archetypes are

Point or node : It refers to the highest level of abstraction in which there is a
cohesive collection of input and output functionalities.

Detector : Detectors capture the core functionalities of the system. For example, in
temperature control system sensors for temperature is a sensor.

Control unit or controller : Controllers are the entities that are useful for
controlling behaviour of the system. For example, in temperature control system.
When the temperature exceeds beyond some threshold value alarming and
dis-alarming system is required. Such a system acts as a controller or control unit.

Indicator or output : It represents the generic output functionalities. For example,
monitoring system of any computer based system acts as an indicator.

In software engineering archetype is a number of major components that are used
to describe the system which we want to build.

8.5.3 Refining Architecture into Components

To create full structure of the system it is required to refine the software
architecture into components. Hence it is necessary to identify the components of the
system. The components can be identified from application domain or from
infrastructure domain. The architectural designer has to identify these components
from these domains. There are two methods by which the components can be
identified.

w eering 8-13

Architectura| Desi

i : esign

1, The data flow diagram is qrayyr ¢ Which the gpeq; g
pe identified. Such components are the con, € specialj
across the interfaces, Ponents that

kg COmponents can

Process the data floy
2. The components can be the entities thy

t follow follow; .
n e
External communicatigp 8 functionalities -

The compop
communication with externa] engir: Ponents that tae part

in the
l 1 entities are the COmmunication components
Control pane Prf)(?essmg These cOmponents perform all contro] panel
management activities.

Detection : These are the cOmponents that perform detection activities.

Indicator management - These are

the components that perform the
output controlling activities.

8.5.4 Defining Instantiations of the System

In order to model a structure of the system simply refining the software into
components is not sufficient. Further refinement is necessary by instantiation of the
system. Instantiation of the system begins with identification of major components and

then identification of its functionalities, characteristics and constraints is carried out in
order to refine the system to greater extent.

Finally with sufficient detailing, the architectural model of the system gets ready.

8.6 Transform and Transaction Mapping

8.6.1 Transform Mapping

j ED in order to map the
ping is a set of design steps appllzed (l)n the D
e ' fi tectural style.
transformed ﬂ{)w characteristics into specific archi

in
Design steps for transform mapping

for performing transform mapping:

: m
Example : Home security syste

it
red for the homeowner for home security
i repa
ftware 15 P

i i has

it needs to be configured. This systelcrll has

fhis R er can interact with it using keypa f

O:iN rt1 the system and to monitor the status o
0

Security system SO o
purpose. After installatlo;‘-ch the home
control panel through Wit are connecte
functional keys. The sensors

| is used to program
re the control pane
o ity syster” SOftV'Va h sensor is assigned a number and
While installing the security configuration €ac se
ile In During
; he system.
and configure t

Software Engineering 8-14 Architecturg Des;

type, a master password is programmed for alarming and de-alarming the g
telephone numbers of emergency services are programmed in the system
dialing when a sensor event occurs.

Ystem, The
S inpyt for

On occurrence of sensor event, it is recognized first and then an alarm which j
attached to the system starts ringing. After a delay time (which is specified by the
homeowner during the configuration) the software dials the telephone ny

mber,
provides the information about the nature of event and its location.

The telephone number will be redialed every 20 seconds unti] telephone
connection is obtained.

Step 1 : Review the fundamental system model to identify the information flow

The fundamental system model can be represented by level 0 DFD and supporting
information. This supporting information can be obtained from the two important
documents called ‘system specification” and ‘software requirement specifications’. Both
of them describe the information flow and structure at software interface.

Control Display of
panel control panel
NV O
(2% OS@, 0\6‘6@
/)7%6 \QO
E Al

arm

Ser;sor Telephone

system e

Fig. 8.12 Level 0 DFD
Step 2 : Review and refine the data flow diagrams for the software —

The data flow diagrams are analyzed and refined into next higher levels. Each
transform in the data flow diagrams impose relatively high level cohesion. That means

after applying the certain transformation the process in the DFD performs a single
distinct function.

For example, the DFD is refined to level 1 to the working of the system. Further
the level 2 DFD is drawn in which the detailing of sensor monitoring system is done:

soﬂware Engineering
-
Control
panel

User
command

Configuration
data

Interact
with
user

Master
password

Activate
or deactivate /i
message

Activate
or deactivate
System

Displa
Display| of
control

Display
status

Validate

password i

User validity message P
Configuration !

Sensor Status of sensor Sensor Type of o
system —{ monitoring
d systey alarm system
Telephone number
tone
Telephone
line
Fig. 8.13 Level 1 DFD
ion i i Information
Configuration information store m
sensor
Establish Nature of sensor, Format for
setup - display
Status against location, 1D |
of sensor sensor sensor ;
Telephone
number

tone

Software Engineering 8-16 Architectural Design
e —

Step 3 : Determine if the DFD has the transform or transaction flow

Characteristics
The information flow within the system is usually represented as transform flow

However, there can be dominance of transaction characteristics in the DF[). Based on
characteristics of the DFD the transformation flow or transaction flow is decided.

For example if we draw a level 3 DFD for the process of ‘Establish setup...” The
transformation flow is identified.

Telephone
number
tone

pulses
to telephone
line

Generate

Info as
sensor
Generate
display

Telephone
number
Ready

tone

Formatted
ID,
type,
location

Establish
alarm
condition

Fig. 8. 15

. c
2 cl ¢
] S| . g
w =
s 32 E

=

c 6lo
s Ug,E
= Ele o
S 9 g
® 2 E
5 < =
=)
=
c
5]
o

response

Read Sensor ID,
sensor

Status
of sensor

c e =
o T 9
" T =
[}] (¥}
o 2 0
m W = Moy m\:@mSO 9 'g ‘614
3 © ..Wb suoy 3
o) Jaquinu \ 6
D o auoydsjal ! R
o m aul| _/ . :
< i3 auoydaja) 0y \ \ AN _\
sas|nd suo} \ H \
sjessuan Apeay \ o ,/:/

Jaquinu @
’

auoyds|al e

1
\
\
1
1
]
\
1
]

1

1
\
1
]
\

\
[}
1
]
\
1
1
\
\
]
1
'
\
\
\
1
\
1
1
\
\

the reasonable boundaries are selected and
on placement of divisions. The incomin

Isolate th
e transform centre by Specifying incoming and outgoing flow

[}
e _.
- 1
: |
= Buiwn 1
uowpuod co_.ﬁn_”___wwmrmm. .f_ uoneuuoyut adAy josuas [Josues d0Suas jo 1
- WIee Yoo wiery 1\ 2suodsal JTq) josuag | PERY smes !
: wiee ysiiqeis3 LE ueqo '
= \
joadAy
= |
I 1
B0 ejep _"
= uoneinbyuo) __
= _
’ i 1
1
= UONEIO 1S)
> m e Aeydsip ;)
adA :]
2 » £ 5 a)e1aUD bonewiod _1e0d - .
» — r
) 1) (7))
Q @u = «©
Q -
-m % > m 210} "OJU! uoneinbyuod
o T g © e —
El o oy
| o A E 2
. 2 » R =
L= = a3
o a9
m - c O

S s Cojrans g P

Step 5 - Perform Soryt il Sactyrmg

e en® TOTrre e DT

,t ’»V ‘/a«-l‘;ﬁt’,rt‘d. & o '_x i:qu =¥

B B Yk mTeTE
0

o [irmiened rmgrrests DECTrT TOs TOIr T

- - - ’4 - - - - e '?"
o \Vide-eé periorm wume TONTTL TIC
4 R TR g . g | =
Wrhen ‘rarafrm frw = cesrrec Te JF_ F Taores o &l I eenm
architer e

For example
STE OVTOITETT MO SP-Irlnaes b

\
\

Sercy Mt SEine SRETE DECITES £ IC
g — e DR —— - = m— - < —.w' .
sensony Inout Contraler, 2 orTe ooy I ve 0L ded TR noo/TIT bt (BRI

)
o/

~

7\
’ ~

-

v N ' v e
B 1

Sa~=or Loy yp—
HES ConuDeey Sonoitoe corroler | | v Sonrene |

Fig. 8.17 First level factonng

Step 6 : Perform second level factoring
In the second level factoring individual bubble of DFD » maroad

module within architecture.

"
A JRNNEYT

\ 1

goftware Engineering

8-19
There could be One—t(wectural Desi
One mapbmg of esign

wo or three bubbles can be COMbineq togcbubble Of DFD into the

After performing the
first-iteration design.

\

Sensor
monitoring system

[|

~ Sensor Alarm Alarm

input controller condition controller output controller

Obtain response

info =stabiieh Search and Format the Raise alarm Setup

o alarm condition select ph.no display condition call

| Read sensor Generate
Genel’ate pu'ses to

display telephone line

Step 7 : Refine the first-itera
soft‘ware quality

Fig. 8.18 Second level factoring

tion architecture ust

refined by

applying

ng design heuristics for improved

the module

n eratio i be

i dThp e first-iteration architecture €an

™ Ie“‘:du. e i i hesion and minimum
y . ploded with high cohe d n i

¢ les can be exploded or imp o e mplene

f:}lpling_ The refinement should be s
e difficulty, tested without confus

1

the struc .
ueh e e easily maintained.

ion and can b

N

Software Engineering 8-20 Architectural Desigy
—— %Sign

Sensor
monitoring system
]
|]
[—
Obtain response Establish alarm conditions Alarm output controller

information L

|

[| |
-
‘ Read sensor] Produgitgnjtp lay as] Raise.alarm signal [Setup call
\ [] l

Generate pulses to
line

Fig. 8.19 Refined program structure

8.6.2 Transaction Mapping

In transaction mapping the user interaction subsystem is considered. In transaction
mapping technique the user command given as input flows into the system and
produces more information flows, ultimately causes the output flow from the DFD.

Design steps for transaction mapping
Step 1 : Review the fundamental system model to identify the information flow

The fundamental system model can be represented by level 0 DFD and supporting
information. This supporting information can be obtained from the two important
documents called ‘system specification” and ‘software requirement specifications’. Both
of them describe the information flow and structure at software interface.

Step 2 : Review and refine the data flow diagrams for the software

The data flow diagrams are analyzed and refined into next higher levels. Each
transform in the data flow diagrams impose relatively high level cohesion. That means
after applying the certain transformation the process in the DFD performs a single
distinct function.

Step 3: Determine if the DFD has the transform or transaction flow
Characteristics

The information flow wi'thin the system is usually represented as transform flow:
Howeverf tbere can be dominance of transaction characteristics in the DFD. Based of
characteristics of the DFD the transformation flow or transaction flow is decided.

Step 4 : Identify the transaction centre a the
nd flow rafi h o
action paths characteristics along eac f

In trans(:;lctlon mapping we have to identify the location of transaction centreé: Frot"
the transaction centre many action paths flow radially from it
m it.

i 8.2
b C*Mk AN shown N Allowine Architectural Design
ayen B ITARSICTON centre. The n\% Vel 2 DFD the o
UPhon path mmand processi
and Ing centre

action paths are also shown

ceem e RevRcoon

D
\
\\
\
S Tvoe of _»~ action
2amrany T o path Configuration
data
- Y
. Configuration info. store
‘‘‘‘‘ -” .\\\\:‘
\\" ‘\“\ »
ot <
. : Activate/
- =~ deactivate
e Display :
\ axgtus with o,
. messages
- Produce h
~. invalid H
S message 4/
‘h“‘s_ 4”
ntre
Fig 8.20 Transaction €
. structure
. inp processing > ;
Mep 5 : Map DFD nto ransaction | o an architecture that contains an
w IS mAPP"d L) nsaction centre the
The idennified transachon flow ~parting from the tra
amne Al b JnCh bta g) action CentTe) are
£ branch an . ath (pat ction path are mappe

coming PThe pubbles along the 2

G”“F\‘f‘-dmg bubbles on in)
odules

???ﬁi into the appropnat® o
% the action modules.

Software Engineering e ek Architectural Desig,

For example

User interaction
system

—
Read user Call for command
command processing
N
ﬁ -]
P
Configuration controller Activate /deactivate system aSSWOSF;iS:J;;cessmg

Fig. 8.21
Step 6 : Factor and refine the transaction structure and structure of each action
path

Each action path of the data flow diagram has its own information flow
characteristics. The action path related substructure is developed. This substructure
serves as first iteration architecture. Refer Fig. 8.22.

User interaction
system

\

Call for command

Display status
with message

Read user command processing
_ _ Activate/ Password
Configuration Deactivate processing
controller system system
. Passwofd
Cf?a“ont_"' Read Validate ro0essing
Read data con Ig:lfél on password password controllef 7

Fig. 8.22 First iteration architecture

T———var B3y 3i:il

- »

Software Engineering

8.
—— —L Architectural Design
Step 7 : ngfme the first-iteratioy architectyye Using design heuristics for improved
software quality
The first-iteration architectyre Can be refined by applying the module
independency.

The modules can be exploded of
coupling. The refinement should pe
without difficulty, tested without confy

imploded with high cohesion and minimum
such that the structure can be implemented
sion and can be easily maintained.

