
Cloud Capabilities and Platform Features

PARALLEL AND DISTRIBUTED PROGRAMMING PARADIGMS

• Parallel and distributed program as a parallel program running on a set of
computing engines or a distributed computing system.

• Distributed computing system is a set of computational engines connected by a
network to achieve a common goal of running a job or an application.

 Ex: A computer cluster or network of workstations is an example of a distributed
 computing system.

• Parallel computing is the simultaneous use of more than one computational
engine (not necessarily connected via a network) to run a job or an application.

 For instance, parallel computing may use either a distributed or a non-distributed
 computing system such as a multiprocessor platform.

Parallel Computing and Programming Paradigms

Distributed computing system consisting of a set of networked nodes or workers. The
system issues for running a typical parallel program in either a parallel or a distributed
manner would include the following

• Partitioning This is applicable to both computation and data as follows

• Computation partitioning This splits a given job or a program into smaller tasks.
Partitioning greatly depends on correctly identifying portions of the job or program that
can be performed concurrently. In other words, upon identifying parallelism in the
structure of the program, it can be divided into parts to be run on different workers.
Different parts may process different data or a copy of the same data.

• Data partitioning This splits the input or intermediate data into smaller pieces. Similarly,

upon identification of parallelism in the input data, it can also be divided into pieces to be
processed on different workers. Data pieces may be processed by different parts of a
program or a copy of the same program.

• Mapping This assigns the either smaller parts of a program or the smaller pieces of
data to underlying resources. This process aims to appropriately assign such parts or
pieces to be run simultaneously on different workers and is usually handled by
resource allocators in the system.

• Synchronization Because different workers may perform different tasks,
 synchronization and coordination among workers is necessary so that race
 conditions are prevented and data dependency among different workers is properly
 managed. Multiple accesses to a shared resource by different workers may raise
 race conditions, whereas data dependency happens when a worker needs the
 processed data of other workers.

• Communication Because data dependency is one of the main reasons for
communication among workers, communication is always triggered when the
intermediate data is sent to workers.

• Scheduling For a job or program, when the number of computation parts
(tasks) or data pieces is more than the number of available workers, a scheduler
selects a sequence of tasks or data pieces to be assigned to the workers. It is
worth noting that the resource allocator performs the actual mapping of the
computation or data pieces to workers, while the scheduler only picks the next
part from the queue of unassigned tasks based on a set of rules called the
scheduling policy. For multiple jobs or programs, a scheduler selects a sequence
of jobs or programs to be run on the distributed computing system.

Because handling the whole data flow of parallel and distributed programming is very
time consuming and requires specialized knowledge of programming, dealing with
these issues may affect the productivity of the programmer and may even result in
affecting the program’s time to market.
Therefore, simplicity of writing parallel programs is an important metric for parallel
and distributed programming paradigms.

Other motivations behind parallel and distributed programming models are
(1) to improve productivity of programmers,
(2) to decrease programs’ time to market,
(3) to leverage underlying resources more efficiently,
(4) to increase system throughput, and
(5) to support higher levels of abstraction

MapReduce, Hadoop, and Dryad are three of the most recently proposed parallel and
distributed programming models. They were developed for information retrieval
applications but have been shown to be applicable for a variety of important
applications

MapReduce

MapReduce, is a software framework which supports parallel and distributed computing
on large data sets

• This software framework abstracts the data flow of running a parallel program on a
distributed computing system by providing users with two interfaces in the form of
two functions: Map and Reduce.

• Users can override these two functions to interact with and manipulate the data flow

of running their programs.

• Framework hides the implementation of all data flow steps such as data partitioning,
mapping, synchronization, communication, and scheduling.

• In this framework the “value” part of the data, (key, value), is the actual data, and
 the “key” part is only used by the MapReduce controller to control the data flow

MapReduce framework: Input data flows through the Map and Reduce functions to
generate the output result under the control flow using MapReduce software
library.
Special user interfaces are used to access the Map and Reduce resources.

• Therefore, the user overrides the Map and Reduce functions first and then invokes the
provided MapReduce (Spec, & Results) function from the library to start the flow of
data.

• The MapReduce function, MapReduce (Spec, & Results), takes an important
parameter which is a specification object, the Spec.

• This object is first initialized inside the user’s program, and then the user writes code to
fill it with the names of input and output files, as well as other optional tuning
parameters.

• This object is also filled with the name of the Map and Reduce functions to identify these
user defined functions to the MapReduce library

Map Function (... .)
{
... ...
}
Reduce Function (... .)
{
... ...
}
Main Function (... .)
{
Initialize Spec object
... ...
MapReduce (Spec, & Results)
}

The overall structure of a user’s program containing the Map, Reduce, and the Main
functions is given below.

• The input data to the Map function is in the form of a (key, value) pair. For example,
 the key is the line offset within the input file and the value is the content of the line.

• The output data from the Map function is structured as (key, value) pairs called
intermediate (key, value) pairs.

• In other words, the user-defined Map function processes each input (key, value)

pair and produces a number of (zero, one, or more) intermediate (key, value)
pairs. Here, the goal is to process all input (key, value) pairs to the Map function in
parallel

• In turn, the Reduce function receives the intermediate (key, value) pairs in the
form of a group of intermediate values associated with one intermediate key,
(key, [set of values]).

• MapReduce framework forms these groups by first sorting the intermediate
(key, value) pairs and then grouping values with the same key.

• It should be noted that the data is sorted to simplify the grouping process. The
Reduce function processes each (key, [set of values]) group and produces a set

 of (key, value) pairs as output.

Strategy to Solve MapReduce Problems

Problem 1: Counting the number of occurrences of each word in a collection of
documents
Solution: unique “key”: each word, intermediate “value”: number of occurrences

Problem 2: Counting the number of occurrences of words having the same size,
or the same
number of letters, in a collection of documents
Solution: unique “key”: each word, intermediate “value”: size of the word

Problem 3: Counting the number of occurrences of anagrams in a collection of
documents.
Anagrams are words with the same set of letters but in a different order (e.g.,
the words “listen” and “silent”).
Solution: unique “key”: alphabetically sorted sequence of letters for each word
(e.g., “eilnst”),
intermediate “value”: number of occurrences

The MapReduce software framework was first proposed and implemented by Google. The
first implementation was coded in C. The implementation takes advantage of GFS [53] as the
underlying layer. MapReduce could perfectly adapt itself to GFS. GFS is a distributed file
system where files are divided into fixed-size blocks (chunks) and blocks are distributed and
stored on cluster nodes.

It is important to understand the performance of different runtimes and, in particular, to
compare MPI(The message passing interface (MPI) is a standardized means of exchanging
messages between multiple computers running a parallel program across distributed
memory.) and MapReduce.

The two major sources of parallel overhead are load imbalance and communication (which
is equivalent to synchronization overhead as communication synchronizes parallel units.

The communication overhead in MapReduce can be quite high, for two reasons:
• MapReduce reads and writes via files, whereas MPI transfers information directly

between nodes over the network.

• MPI does not transfer all data from node to node, but just the amount needed to
update information. We can call the MPI flow δ flow and the MapReduce flow full
data flow.

Twister Iterative MapReduce

The same phenomenon is seen in all “classic parallel” loosely synchronous applications
which typically exhibit an iteration structure over compute phases followed by
communication phases. We can address the performance issues with two important
changes:

1. Stream information between steps without writing intermediate steps to disk.
2. Use long-running threads or processors to communicate the δ (between iterations)
flow.

Twister is a lightweight MapReduce runtime we have developed by incorporating these
enhancements.
Twister provides the following features to support MapReduce computations

• Distinction on static and variable data
• Configurable long running (cacheable) map/reduce tasks
• Pub/sub messaging based communication/data transfers
• Efficient support for Iterative MapReduce computations (extremely faster

than Hadoop or Dryad/DryadLINQ)
• Combine phase to collect all reduce outputs
• Data access via local disks
• Lightweight (~5600 lines of Java code)
• Support for typical MapReduce computations
• Tools to manage data

Hadoop Library from Apache

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. It has many similarities with existing distributed file systems.
However, the differences from other distributed file systems are significant. HDFS is highly
fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for applications that have large data
sets. HDFS relaxes a few POSIX requirements to enable streaming access to file system
data.

The Hadoop implementation of MapReduce uses the Hadoop Distributed File System
(HDFS) as its underlying layer rather than GFS. The Hadoop core is divided into two
fundamental layers: the MapReduce engine and HDFS. The MapReduce engine is the
computation engine running on top of HDFS as its data storage manager

• Hardware failure is the norm rather than the exception. An HDFS instance
may consist of hundreds or thousands of server machines, each storing part
of the file system’s data. The fact that there are a huge number of
components and that each component has a non-trivial probability of failure
means that some component of HDFS is always non-functional. Therefore,
detection of faults and quick, automatic recovery from them is a core
architectural goal of HDFS.

• Applications that run on HDFS need streaming access to their data sets. They are
not general purpose applications that typically run on general purpose file
systems. HDFS is designed more for batch processing rather than interactive use
by users. The emphasis is on high throughput of data access rather than low
latency of data access.

• Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes
to terabytes in size. Thus, HDFS is tuned to support large files. It should provide high
aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It
should support tens of millions of files in a single instance.

• HDFS applications need a write-once-read-many access model for files. A file once
created, written, and closed need not be changed except for appends and
truncates.

Features of Hadoop

HDFS: HDFS is a distributed file system inspired by GFS that organizes files and stores
their data on a distributed computing system.

HDFS Architecture: HDFS has a master/slave architecture containing a single
NameNode as the master and a number of DataNodes

• HDFS has a master/slave architecture. An HDFS cluster consists of a single
NameNode, a master server that manages the file system namespace and
regulates access to files by clients.

• In addition, there are a number of DataNodes as workers (slaves). usually one per
node in the cluster, which manage storage attached to the nodes that they run on.

• HDFS exposes a file system namespace and allows user data to be stored in files

• To store a file in this architecture, HDFS splits the file into fixed-size blocks (e.g., 64
MB) and stores them on workers (DataNodes). The mapping of blocks to DataNodes
is determined by the NameNode. The NameNode (master) also manages the file
system’s metadata and namespace

• The NameNode executes file system namespace operations like opening, closing,
and renaming files and directories. It also determines the mapping of blocks to
DataNodes.

• The DataNodes are responsible for serving read and write requests from the file
system’s clients. The DataNodes also perform block creation, deletion, and
replication upon instruction from the NameNode.

• The NameNode and DataNode are pieces of software designed to run on
commodity machines. These machines typically run a GNU/Linux operating system
(OS). HDFS is built using the Java language; any machine that supports Java can run
the NameNode or the DataNode software.

• Usage of the highly portable Java language means that HDFS can be deployed on a
wide range of machines. A typical deployment has a dedicated machine that runs
only the NameNode software. Each of the other machines in the cluster runs one
instance of the DataNode software.

The existence of a single NameNode in a cluster greatly simplifies the architecture of the
system. The NameNode is the arbitrator and repository for all HDFS metadata. The system
is designed in such a way that user data never flows through the NameNode

HDFS is designed to reliably store very large files across machines in a large cluster. It
stores each file as a sequence of blocks. The blocks of a file are replicated for fault
tolerance. The block size and replication factor are configurable per file.

All blocks in a file except the last block are the same size, while users can start a new block
without filling out the last block to the configured block size after the support for variable
length block was added to append and hsync.

• The system having the namenode acts as the master server and it does
the following tasks −

• Manages the file system namespace.

• Regulates client’s access to files.

• It also executes file system operations such as renaming, closing, and
opening files and directories.

• An application can specify the number of replicas of a file. The replication factor can be
specified at file creation time and can be changed later. Files in HDFS are write-once
(except for appends and truncates) and have strictly one writer at any time.

• The NameNode makes all decisions regarding replication of blocks. It periodically
receives a Heartbeat and a Blockreport from each of the DataNodes in the cluster.

• Receipt of a Heartbeat implies that the DataNode is functioning properly. A
Blockreport contains a list of all blocks on a DataNode.

On startup, the NameNode enters a special state called Safemode. Replication of data
blocks does not occur when the NameNode is in the Safemode state. The NameNode
receives Heartbeat and Blockreport messages from the DataNodes.
A Blockreport contains the list of data blocks that a DataNode is hosting. Each block has a
specified minimum number of replicas.

A block is considered safely replicated when the minimum number of replicas of that data
block has checked in with the NameNode. After a configurable percentage of safely
replicated data blocks checks in with the NameNode (plus an additional 30 seconds), the
NameNode exits the Safemode state.

It then determines the list of data blocks (if any) that still have fewer than the specified
number of replicas. The NameNode then replicates these blocks to other DataNodes.

Three components contribute in running a job in this system: a user node, a
JobTracker, and several TaskTrackers.

The data flow starts by calling the runJob(conf) function inside a user program
running on the user node, in which conf is an object containing some tuning
parameters for the MapReduce framework and HDFS.

The runJob(conf) function and conf are comparable to the MapReduce(Spec,
&Results) function and Spec in the first implementation of MapReduce by
Google.

Running Job in Hadoop

Job Submission Each job is submitted from a user node to the JobTracker node that
might be situated in a different node within the cluster through the following
procedure:
• A user node asks for a new job ID from the JobTracker and computes input file
 splits.
• The user node copies some resources, such as the job’s JAR file, configuration
 file, and computed input splits, to the JobTracker’s file system.

• The user node submits the job to the JobTracker by calling the submitJob()
 function.
• Task assignment The JobTracker creates one map task for each computed input
 split by the user node and assigns the map tasks to the execution slots of the
 TaskTrackers.

• The JobTracker considers the localization of the data when assigning the map

tasks to the TaskTrackers.

• The JobTracker also creates reduce tasks and assigns them to the TaskTrackers.

The number of reduce tasks is predetermined by the user, and there is no
locality consideration in assigning them.

• Task execution The control flow to execute a task (either map or reduce) starts
inside the TaskTracker by copying the job JAR file to its file system. Instructions
inside the job JAR file are executed after launching a Java Virtual Machine (JVM)
to run its map or reduce task.

• Task running check A task running check is performed by receiving periodic
heartbeat messages to the JobTracker from the TaskTrackers. Each heartbeat
notifies the JobTracker that the sending TaskTracker is alive, and whether the
sending TaskTracker is ready to run a new task.

Google App Engine

GAE programming model for two supported languages: Java and Python.
A client environment that includes an Eclipse plug-in for Java allows you to debug your
GAE on your local machine.

Also, the GWT Google Web Toolkit is available for Java web application developers.

 Developers can use this, or any other language using a JVM based interpreter or compiler,
such as JavaScript or Ruby. Python is often used with frameworks such as Django and
CherryPy, but Google also supplies a built in webapp Python environment.

The data store is a NOSQL data management system for entities that can be, at most, 1
MB in size and are labeled by a set of schema-less properties. Queries can retrieve
entities of a given kind filtered and sorted by the values of the properties.

Java offers Java Data Object (JDO) and Java Persistence API (JPA) interfaces implemented
by the open source Data Nucleus Access platform, while Python has a SQL-like query
language called GQL.

• GFS is used for storing large amounts of data.
• MapReduce is for use in application program development.
• Chubby is used for distributed application lock services.
• BigTable offers a storage service for accessing structured data

With these building blocks, Google has built many cloud applications.
Figure shows the overall architecture of the Google cloud infrastructure.

A typical cluster configuration can run the Google File System, MapReduce jobs, and
BigTable servers for structure data.

Extra services such as Chubby for distributed locks can also run in the clusters.

• Third-party application providers can use GAE to build cloud applications for
providing services.

• The applications all run in data centers under tight management by Google
engineers. Inside each data center, there are thousands of servers forming

 different clusters.

• GAE runs the user program on Google’s infrastructure.
• As it is a platform running third-party programs, application developers now do

not need to worry about the maintenance of servers.
• GAE can be thought of as the combination of several software components.

The GAE is not an infrastructure platform, but rather an application
development platform for users.

a. The datastore offers object-oriented, distributed, structured data storage
 services based on BigTable techniques. The datastore secures data
 management operations.

b. The application runtime environment offers a platform for scalable web
programming and execution. It supports two development languages: Python
and Java.
c. The software development kit (SDK) is used for local application development.
The SDK allows users to execute test runs of local applications and upload
application code.
d. The administration console is used for easy management of user application
development cycles, instead of for physical resource management.
e. The GAE web service infrastructure provides special interfaces to guarantee
flexible use and management of storage and network resources by GAE.

Amazon Web Services (AWS)

Amazon has been a leader in providing public cloud services. Amazon applies
the IaaS model in providing its services

EC2 provides the virtualized platforms to the host VMs where the cloud application can
run.

S3 (Simple Storage Service) provides the object-oriented storage service for users.
Amazon S3 provides a simple web services interface that can be used to store and
retrieve any amount of data, at any time, from anywhere on the web. S3 provides the
object-oriented storage service for users

EBS (Elastic Block Service) provides the block storage interface which can be used to
support traditional applications.

SQS stands for Simple Queue Service, and its job is to ensure a reliable message service
between two processes. The message can be kept reliably even when the receiver processes
are not running. Users can access their objects through SOAP with either browsers or other
client programs which support the SOAP standard.

Amazon was the first company to introduce VMs in application hosting. Customers can
rent VMs instead of physical machines to run their own applications. By using VMs,
customers can load any software of their choice.

The elastic feature of such a service is that a customer can create, launch, and terminate
server instances as needed, paying by the hour for active servers. Amazon provides
several types of preinstalled VMs. Instances are often called Amazon Machine Images
(AMIs) which are preconfigured with operating systems based on Linux or Windows, and
additional software.

The fundamental operation unit of S3 is called an object. Each object is stored in
a bucket and retrieved via a unique, developer-assigned key. In other words, the
bucket is the container of the object.

 Besides unique key attributes, the object has other attributes such as values,
metadata, and access control information. From the programmer’s perspective,
the storage provided by S3 can be viewed as a very coarse-grained key-value
pair.
Through the key-value programming interface, users can write, read, and delete
objects containing from 1 byte to 5 gigabytes of data each.

There are two types of web service interface for the user to access the data
stored in Amazon clouds. One is a REST (web 2.0) interface, and the other is a
SOAP interface.

Authentication mechanisms to ensure that data is kept secure from unauthorized
access. Objects can be made private or public, and rights can be granted to specific
users.

• Per-object URLs and ACLs (access control lists).

The Elastic Block Store (EBS) provides the volume block interface for saving and restoring
the virtual images of EC2 instances.

Traditional EC2 instances will be destroyed after use. The status of EC2 can now be saved
in the EBS system after the machine is shut down. Users can use EBS to save persistent
data and mount to the running instances of EC2.

Note that S3 is “Storage as a Service” with a messaging interface. EBS is analogous to a
distributed file system accessed by traditional OS disk access mechanisms. EBS allows you
to create storage volumes from 1 GB to 1 TB that can be mounted as
EC2 instances.

SimpleDB provides a simplified data model based on the relational database data model.
Structured data from users must be organized into domains.

 Each domain can be considered a table. The items are the rows in the table. A cell in the
table is recognized as the value for a specific attribute (column name) of the
corresponding row. This is similar to a table in a relational database.

However, it is possible to assign multiple values to a single cell in the table. This is not
permitted in a traditional relational database which wants to maintain data consistency.

Azure is a cloud computing platform which was launched by Microsoft in February
2010. It is an open and flexible cloud platform which helps in development, data
storage, service hosting, and service management. The Azure tool hosts web
applications over the internet with the help of Microsoft data centers.

Windows Azure

Azure as PaaS (Platform as a Service)

A platform is provided to clients to develop and deploy software. The clients can focus on
the application development rather than having to worry about hardware and infrastructure.
It also takes care of most of the operating systems, servers and networking issues.

There are mainly three types of clouds in Microsoft Azure are:

PAAS

SAAS

IAAS

Azure as IaaS
IaaS(Infrastructure as a Service) is the foundational cloud platform layer. This Azure service
is used by IT administrators for processing, storage, networks or any other fundamental
computer operations. It allows users to run arbitrary software.

Azure as PaaS
PaaS is a computing platform which includes an operating system, programming language
execution environment, database or web services. This Azure service is used by developers
and application providers.

Azure As SaaS
SaaS (Software as a Service) is software which is centrally hosted and managed. It is a
single version of the application is used for all customers. You can scale out to multiple
instances. This helps you to ensure the best performance in all locations. The software is
licensed through a monthly or annual subscription. MS Exchange, Office, Dynamics are
offered as a SaaS

Azure Domains (Components)

https://www.guru99.com/images/1/012419_1002_MicrosoftAz2.png
https://www.guru99.com/images/1/012419_1002_MicrosoftAz2.png

Compute
It offers computing operations like app hosting, development, and deployment in
Azure Platform. It has the following components:
Virtual Machine: Allows you to deploy any language, workload in any operating
system
Virtual Machine Scale Sets: Allows you to create thousands of similar virtual machines
in minutes
Azure Container Service: Create a container hosting solution which is optimized for
Azure. You scale and arrange applications using Kube, DC/OS, Swarm or Docker

Storage
Azure store is a cloud storage solution for modern applications. It is designed to meet
the needs of their customer's demand for scalability. It allows you to store and
process hundreds of terabytes of data. It has the following components:

Blob Storage: Azure Blob storage is a service which stores unstructured data in the
cloud as objects/blobs. You can store any type of text or binary data, such as a
document, media file, or application installer.

Queue Storage: It provides cloud messaging between application components. It
delivers asynchronous messaging to establish communication between application
components.

Database
This category includes Database as a Service (DBaaS) which offers SQL and NoSQL
tools. It also includes databases like Azure Cosmos DB and Azure Database for
PostgreSQL. It has the following components:

SQL Database: It is a relational database service in the Microsoft cloud based on the
market-leading Microsoft SQL Server engine.
DocumentDB: It is a fully managed NoSQL database service which is It built for fast and
predictable performance and ease of development.

Content Delivery Network
Content Delivery Network (CDN) caches static web content at strategically placed
locations. This helps you to offer speed for delivering content to users. It has the
following components:
VPN Gateway: VPN Gateway sends encrypted traffic across a public connection.
Traffic Manager: It helps you to control and allows you to do the distribution of user
traffic for services like WebApps, VM, Azure, and cloud services in different
Datacenters

Enterprise Integration Services:
Service Bus: Service Bus is an information delivery service which works on the third-
party communication system.
SQL Server Stretch Database: This service helps you migrates any cold data securely and
transparently to the Microsoft Azure cloud

Monitoring + Management Services
These services allow easy management of Azure deployment.
Azure Resource Manager: It makes it easy for you to manage and visualize resource in
your app. You can even control who is your organization can act on the resources.

Azure Networking
Virtual Network: Perform Network isolation and segmentation. It offers filter and
Route network traffic.
Load Balancer: Offers high availability and network performance of any application.
Load balance information Internet traffic to Virtual machines.
Application Gateway: It is a dedicated virtual appliance that offers an Application
Delivery Controller (ADC) as a service.

Web and Mobile Services

Web Apps: Web Apps allows you to build and host websites in the programming
language of your choice without the need to manage its infrastructure.
Mobile Apps: Mobile Apps Service offers a highly scalable, globally available mobile
app development platform for users.
API Apps: API apps make it easier to develop, host and consume APIs in the cloud and
on-premises.

Workflows in the cloud

It provides a visual designer to create and automate your process as a series of steps
known as a workflow.

Notification Hubs: Azure Notification Hubs offers an easy-to-use, multi-platform,
scaled-out push engine.

Event Hubs: Azure Event Hubs is data streaming platform which can manage millions
of events per second. Data sent to an event hub can be transformed and stored
using any real-time analytics offers batching/storage adapters.

Eucalyptus is a product from Eucalyptus Systems (www.eucalyptus.com) that was
developed out of a research project at the University of California, Santa Barbara.
Eucalyptus was initially aimed at bringing the cloud computing paradigm to academic
supercomputers and clusters.

Eucalyptus provides an AWS-compliant EC2-based web service interface for
interacting with the cloud service.

Additionally, Eucalyptus provides services, such as the AWS-compliant Walrus, and a
user interface for managing users and images.

Eucalyptus

Eucalyptus is an open source Linux based software architecture which provides an
EC2-compatible cloud computing platform and S3-compatible cloud storage
platform. It implements scalable, efficient-enhancing and private and hybrid clouds
within and organization’s IT infrastructure. It gives an Infrastructure as a Service
(IaaS) solution. Users can use commodity hardware.

Eucalyptus was developed to support the high performance computing (HPC).
Eucalyptus can be deployed without modification on all major Linux OS
distributions, including Ubuntu, RHEL/CentOS, openSUSE, and Debian.

Eucalyptus Features
For implementing, managing and maintaining the virtual machines, network and
storage Eucalyptus has variety of features.
• SSH Key Management
• Image Management
• Linux-based VM Management
• IP Address Management
• Security Group Management
• Volume and Snapshot Management

Components of Eucalyptus:

1. Cluster Controller (CC) Cluster Controller manages the one or more Node

controller and responsible for deploying and managing instances on them. It
communicates with Node Controller and Cloud Controller simultaneously. CC
also manages the networking for the running instances under certain types of
networking modes available in Eucalyptus.

2. Cloud Controller (CLC) Cloud Controller is front end for the entire ecosystem.
CLC provides an Amazon EC2/S3 compliant web services interface to the client
tools on one side and interacts with the rest of the components of the Eucalyptus
infrastructure on the other side.

3. Node Controller (NC) It is the basic component for Nodes. Node controller
maintains the life cycle of the instances running on each nodes. Node Controller
interacts with the OS, hypervisor and the Cluster Controller simultaneously.

4. Walrus Storage Controller (WS3) Walrus Storage Controller is a simple file
storage system. WS3 stores the the machine images and snapshots. It also stores
and serves files using S3 APIs.

5. Storage Controller (SC) Allows the creation of snapshots of volumes. It provides
persistent block storage over AoE or iSCSI to the instances.

VM Image Management

Eucalyptus takes many design queues from Amazon’s EC2, and its image management
system is no different. Eucalyptus stores images in Walrus, the block storage system
that is analogous to the Amazon S3 service. As

As such, any user can bundle her own root file system, and upload and then register
this image and link it with a particular kernel and ramdisk image. This image is
uploaded into a user-defined bucket within Walrus, and can be retrieved anytime
from any availability zone.

Nimbus is a powerful toolkit focused on converting a computer cluster into an

Infrastructure-as-a-Service (IaaS) cloud for scientific communities. Essentially, it allows
a deployment and configuration of virtual machines (VMs) on remote resources to
create an environment suitable for the users’ requirements. Being written
in Python and Java, it is totally free and open-source software, released under the
Apache License.

Nimbus consists of two basic products:

• Nimbus Infrastructure is an open source EC2/S3-compatible IaaS solution with
features that benefit scientific community interests, like support for auto-configuring
clusters, proxy credentials, batch schedulers, best-effort allocations, etc.

• Nimbus Platform is an integrated set of tools for a multi-cloud environment that

automates and simplifies the work with infrastructure clouds (deployment, scaling,
and management of cloud resources) for scientific users.

http://quintagroup.com/services/python

Nimbus Goals

Allow providers to build clouds
• Private clouds (privacy, expense considerations)
• Workspace Service: open source EC2 implementation

Allow users to use cloud computing
• Do whatever it takes to enable scientists to use IaaS
• Context Broker: turnkey virtual clusters IaaS Gateway: interoperability

 Allow developers to experiment with Nimbus
• For research or usability/performance improvements
• Community extensions and contributions

1. Workspace service: Allows clients to manage and administer VMs by providing to
two interfaces; One interface is based on the web service resource framework
(WSRF) and the other is based on EC2 WSDL. This service communicates with a
workspace resource manager or a workspace pilot to manage instances.

2.Workspace resource manager: Implements VM instance creation on a site and
management.
3. Workspace pilot: provides virtualization with significant changes to the site
configurations.
4. Workspace control: implements VM instance management such as start, stop
and pause VM. It also provides image management and sets up networks and
provides IP assignment.
5. Context broker: allows clients coordinate large virtual cluster launches
automatically and repeatedly.
6. Workspace client: a complex client that provides full access to the workspace
service functionality.
7. Cloud client: a simpler client providing access to selected functionalities in the
workspace service.

OpenNebula is a simple but feature-rich and flexible solution to build and manage

enterprise clouds and virtualized DCs, that combines existing virtualization technologies
with advanced features for multi-tenancy, automatic provision and elasticity. OpenNebula
follows a bottom-up approach driven by sysadmins, devops and users real needs.

A cloud architecture is defined by three components: storage, networking and
virtualization. Therefore, the basic components of an OpenNebula system are:

• Front-end that executes the OpenNebula services.
• Hypervisor-enabled hosts that provide the resources needed by the VMs.
• Datastores that hold the base images of the VMs.
• Physical networks used to support basic services such as interconnection of the

storage servers and OpenNebula control operations, and VLANs for the VMs.

OpenNebula presents a highly modular architecture that offers broad support for
commodity and enterprise-grade hypervisor, monitoring, storage, networking and user
management services.

Front-End

The machine that holds the OpenNebula installation is called the front-end. This
machine needs network connectivity to all the hosts, and possibly access to the
storage Datastores (either by direct mount or network). The base installation of
OpenNebula takes less than 150MB.

Figure shows the OpenNebula architecture and its main components.

• The architecture of OpenNebula has been designed to be flexible and modular to
allow integration with different storage and network infrastructure configurations,
and hypervisor technologies.

• Here, the core is a centralized component that manages the VM full life cycle,
including setting up networks dynamically for groups of VMs and managing their
storage requirements, such as VM disk image deployment or on-the-fly software
environment creation.

• Important component is the capacity manager or scheduler. It governs the
functionality provided by the core. The default capacity scheduler is a
requirement/rank matchmaker. However, it is also possible to develop more complex
scheduling policies, through a lease model and advance reservations

• The last main components are the access drivers. They provide an abstraction of the
underlying infrastructure to expose the basic functionality of the monitoring,

 storage, and virtualization services available in the cluster.

• Therefore, OpenNebula is not tied to any specific environment and can provide a
uniform management layer regardless of the virtualization platform.

• OpenNebula implements the libvirt API , an open interface for VM management,
as well as a command-line interface (CLI).

• A subset of this functionality is exposed to external users through a cloud

interface. OpenNebula is able to adapt to organizations with changing resource
needs, including addition or failure of physical resources . Some essential features
to support changing environments are live migration and VM snapshots

• when the local resources are insufficient, OpenNebula can support a hybrid cloud
 model by using cloud drivers to interface with external clouds.

• Their local infrastructure with computing capacity from a public cloud to meet
peak demands, or implement HA strategies. OpenNebula currently includes an
EC2 driver, which can submit requests to Amazon EC2 and Eucalyptus, as well as
an Elastic Hosts driver .

